Putting thought to paper: a microARCS protease screen.

J Biomol Screen

Biological Screening, Abbott Laboratories, Abbott Park, IL, USA.

Published: December 2003

In micro-arrayed compound screening (microARCS), an agarose gel is used as a reaction vessel that maintains humidity and compound location as well as being a handling system for reagent addition. Two or more agarose gels may be used to bring test compounds, targets, and reagents together, relying on the pore size of the gel matrix to regulate diffusion of reactants. It is in the microenvironment of the agarose matrix that all the components of an enzymatic reaction interact and result in inhibitable catalytic activity. In an effort to increase the throughput of microARCS-based screens, reduce the effort involved in manipulating agarose gels, and reduce costs, blotter paper was used rather than a second agarose gel to introduce a substrate to a gel containing a target enzyme. In this assay, the matrix of the blotter paper did not prevent the substrate from diffusing into the enzyme gel. The compound density of the microARCS format, the ease of manipulating sheets of paper for reagent addition, and a scheduled protocol for running multiple gels allowed for a throughput capacity of more than 200,000 tests per hour. A protease assay was developed and run in the microARCS format at a rate of 200,000 tests per hour using blotter paper to introduce the substrate. Picks in the primary screen were retested in the microARCS format at a density of 384 compounds per sheet. IC(50) values were confirmed in a 96-well plate format. The screen identified several small molecule inhibitors of the enzyme. The details of the screening format and the analysis of the hits from the screen are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1087057103258587DOI Listing

Publication Analysis

Top Keywords

blotter paper
12
microarcs format
12
agarose gel
8
reagent addition
8
agarose gels
8
introduce substrate
8
200000 tests
8
tests hour
8
paper
5
microarcs
5

Similar Publications

Article Synopsis
  • - The paper discusses the increasing prevalence of LSD analogs, known as "designer psychedelics," in illegal drug markets, which has led to a rise in recreational use and detection by law enforcement.
  • - Researchers developed a highly sensitive UHPLC-QqQ-MS/MS method to detect LSD and its various analogs in biological samples, achieving limits of quantification as low as 0.5 pg/mL.
  • - A stability study highlighted that using NaF for sample collection can help stabilize LSD analogs, making this method useful for clinical and forensic applications to identify new designer drugs.
View Article and Find Full Text PDF

Unlabelled: Olfactory disorders is one of the first symptoms of diseases from various departments of medicine (otorhinolaryngology, psychology, neurology, etc.). Based on international clinical recommendations, olfactory tests are the gold standard for the diagnosis of olfactory disorders.

View Article and Find Full Text PDF

Lysergic acid diethylamide (LSD) analogs have emerged as new psychoactive substances (NPS) since the mid-2010s, and new compounds continue to emerge for recreational use. Since the end of 2023, "1D-AL-LAD" appeared on X (formerly Twitter) and other websites. As for the compound "1D-LSD" (which also has "1D" in the name), several studies show that the ingredient of seized blotter paper printed "1D-LSD" was actually 1-(2-thienoyl)-LSD (1T-LSD).

View Article and Find Full Text PDF

Objectives: Opioid use disorder (OUD)-associated overdose deaths have reached epidemic proportions worldwide. An important driving force for relapse is anxiety associated with opioid withdrawal. We hypothesized that our new technology, termed heterodyned whole-body vibration (HWBV) would ameliorate anxiety associated with OUD.

View Article and Find Full Text PDF

An innovative approach for selective and robust screening of NBOHs, NBOMes, and LSD in forensic samples using a 3D-Printed electrochemical double cell.

Talanta

August 2024

Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil; Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil. Electronic address:

Lysergic acid diethylamide (LSD) and two phenethylamine classes (NBOHs and NBOMes) are the main illicit drugs found in seized blotter papers. The preliminary identification of these substances is of great interest for forensic analysis. In this context, this work constitutes the inaugural demonstration of an efficient methodology for the selective detection of LSD, NBOHs, and NBOMes, utilizing a fully 3D-printed electrochemical double cell (3D-EDC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!