The thylakoid lumen of the cyanobacterium Synechocystis PCC 6803 is supplied with copper via two copper-transporting ATPases and a metallochaperone intermediary. We show that the copper site of this metallochaperone is unusual and consists of two cysteine residues and a histidine imidazole located on structurally dynamic loops. Substitution of this histidine residue enhances bacterial two-hybrid interaction with the cytosolic copper exporter, but not the copper importer, suggesting that the interacting surfaces are distinct, with implications for metal transfer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223992 | PMC |
http://dx.doi.org/10.1042/BJ20031669 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.
Deuterated compounds have broad applications across various fields, with dehalogenative deuteration serving as an efficient method to obtain these molecules. However, the diverse electronic structures of active sites in the heterogeneous system and the limited recyclability in the homogeneous system significantly hinder the advancement of dehalogenative deuteration. In this study, we present a catalyst composed of copper single-atom sites anchored within an ordered mesoporous nitrogen-doped carbon matrix, synthesized via a mesopore confinement method.
View Article and Find Full Text PDFOrg Lett
January 2025
Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
Here, we present a three-component successive radical addition strategy for the preparation of complex noncanonical α-amino acids from easily available glycine derivatives, alkenes, and aryl sulfonium salts via a copper-catalyzed photoredox-neutral catalytic cycle. The utility of this method is further demonstrated by its application in late-stage site-selective modifications of glycine residues in short peptides. It is worth noting that only 1 mol % copper catalyst is required in this reaction, demonstrating high catalytic efficiency.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Physics, Tamkang University, Tamsui, 25137, Taiwan.
This investigation explores the potential of co-incorporating nickel (Ni) and cobalt (Co) into copper oxide (CuO) nanostructures for bifunctional electrochemical charge storage and oxygen evolution reactions (OER). A facile wet chemical synthesis method is employed to co-incorporate Ni and Co into CuO, yielding diverse nanostructured morphologies, including rods, spheres, and flake. The X-ray diffraction (XRD) and Raman analyses confirmed the formation of NiCo-CuO nanostructure, with minor phases of nickel oxide (NiO) and cobalt tetraoxide (CoO).
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China. Electronic address:
Phenolic compounds are prevalent in domestic and industrial effluents, leading a serious environmental hazard. Paper-based analysis device mediated by nanozymes has shown great potential in portable visual determination of phenolic compounds in the environment. In this work, we used nicotinic acid derivatives such as pyridine-2,3-dicarboxylic acid, 2-methylnicotinic acid and 2-aminonicotinic acid by coordinating copper (II) acetate monohydrate coordination to obtain Cu2-COOHNA, Cu2-CHNA, Cu2-ANA nanozymes with laccase-activity.
View Article and Find Full Text PDFQRB Discov
December 2024
Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.
Despite major efforts toward its eradication, cholera remains a major health threat and economic burden in many low- and middle-income countries. Between outbreaks, the bacterium responsible for the disease, , survives in aquatic environmental reservoirs, where it commonly forms biofilms, for example, on zooplankton. -acetyl glucosamine-binding protein A (GbpA) is an adhesin that binds to the chitinaceous surface of zooplankton and breaks its dense crystalline packing thanks to its lytic polysaccharide monooxygenase (LPMO) activity, which provides with nutrients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!