A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nonaqueous capillary zone electrophoresis of synthetic organic polypeptides. | LitMetric

Nonaqueous capillary zone electrophoresis of synthetic organic polypeptides.

Anal Chem

Laboratoire Organisation Moléculaire, Evolution et Matériaux Fluorés, UMR CNRS 5073, Université de Montpellier II, case courier 17, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.

Published: October 2003

Poly(Nepsilon-trifluoroacetyl-L-lysine) was used as a model solute to investigate the potential of nonaqueous capillary electrophoresis (NACE) for the characterization of synthetic organic polymers. The information obtained by NACE was compared to that derived from size exclusion chromatography (SEC) experiments, and the two techniques were found to be complimentary for polymer characterization. On one hand, NACE permitted (i) the separation of oligomers according to their molar mass and (ii) the separation of the polymers according to the nature of the end groups. On the other hand, SEC experiments were used for the characterization of the molar mass distribution for higher molar masses. Due to the tendency of the solutes (polypeptides) to adsorb onto the fused-silica capillary wall, careful attention was paid to the rinsing procedure of the capillary between runs in order to keep the capillary surface clean. For that purpose, the use of electrophoretic desorption under denaturating conditions was very effective. Optimization of the separation was performed by studying (i) the influence of the proportion of methanol in a methanoVacetonitrile mixture and (ii) the influence of acetic acid concentration in the background electrolyte. Highly resolved separation of the oligomers (up to a degree of polymerization n of approximately 50) was obtained by adding trifluoroacetic acid to the electrolyte. Important information concerning the polymer conformations could be obtained from the mobility data. Two different plots relating the effective mobility data to the degree of polymerization were proposed for monitoring the changes in polymer conformations as a function of the number of monomers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac034526oDOI Listing

Publication Analysis

Top Keywords

nonaqueous capillary
8
synthetic organic
8
separation oligomers
8
molar mass
8
degree polymerization
8
polymer conformations
8
mobility data
8
capillary zone
4
zone electrophoresis
4
electrophoresis synthetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!