Meiotic recombination is not random along chromosomes; rather, there are preferred regions for initiation called hotspots. Although the general properties of meiotic hotspots are known, the requirements at the DNA sequence level for the determination of hotspot activity are still unclear. The sequence of six known hotspots in Saccharomyces cerevisiae was compared to identify a common homology region (CoHR). They reported that the locations of CoHR sequences correspond to mapped double-strand break (DSB) sites along three chromosomes (I, III, VI). We report here that a deletion of CoHR at HIS2, a hotspot used to identify the motif, has no significant effect on recombination. In the absence of CoHR, DSB formation occurs at a high frequency and at the same sequences as in wild-type strains. In cases where the deletion of sequences containing the CoHR motif has been shown to reduce recombination, we propose that it may be a reflection of the location of the deletion, rather than the loss of CoHR, per se.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1298961 | PMC |
http://dx.doi.org/10.1038/sj.embor.7400050 | DOI Listing |
EMBO Rep
January 2004
Department of Biological Sciences, University of Iowa, 204 Biology Building East, Iowa City, Iowa 52242, USA.
Meiotic recombination is not random along chromosomes; rather, there are preferred regions for initiation called hotspots. Although the general properties of meiotic hotspots are known, the requirements at the DNA sequence level for the determination of hotspot activity are still unclear. The sequence of six known hotspots in Saccharomyces cerevisiae was compared to identify a common homology region (CoHR).
View Article and Find Full Text PDFEMBO Rep
September 2000
Department of Genetics, The Hebrew University, Jerusalem, Israel.
Meiotic recombination in yeast is initiated by DNA double-strand breaks (DSBs) that occur at preferred sites, distributed along the chromosomes. These DSB sites undergo changes in chromatin structure early in meiosis, but their common features at the level of DNA sequence have not been defined until now. Alignment of 1 kb sequences flanking six well-mapped DSBs has allowed us to define a flexible sequence motif, the CoHR profile, which predicts the great majority of meiotic DSB locations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!