Synaptotagmins are membrane proteins that possess tandem C2 domains and play an important role in regulated membrane fusion in metazoan organisms. Here we show that both synaptotagmins I and II, the two major neuronal isoforms, can interact with the syntaxin/synaptosomal-associated protein of 25 kDa (SNAP-25) dimer, the immediate precursor of the soluble NSF attachment protein receptor (SNARE) fusion complex. A stretch of basic amino acids highly conserved throughout the animal kingdom is responsible for this calcium-independent interaction. Inositol hexakisphosphate modulates synaptotagmin coupling to the syntaxin/SNAP-25 dimer, which is mirrored by changes in chromaffin cell exocytosis. Our results shed new light on the functional importance of the conserved polybasic synaptotagmin motif, suggesting that synaptotagmin interacts with the t-SNARE dimer to up-regulate the probability of SNARE-mediated membrane fusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M310710200 | DOI Listing |
PLoS One
August 2013
Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America.
Evoked synaptic transmission is dependent on interactions between the calcium sensor Synaptotagmin I and the SNARE complex, comprised of Syntaxin, SNAP-25, and Synaptobrevin. Recent evidence suggests that Snapin may be an important intermediate in this process, through simultaneous interactions of Snapin dimers with SNAP-25 and Synaptotagmin. In support of this model, cultured neurons derived from embryonically lethal Snapin null mutant mice exhibit desynchronized release and a reduced readily releasable vesicle pool.
View Article and Find Full Text PDFJ Biol Chem
May 2009
Research Group Structural Biochemistry, Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany.
The three key players in the exocytotic release of neurotransmitters from synaptic vesicles are the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin 2, syntaxin 1a, and SNAP-25. Their assembly into a tight four-helix bundle complex is thought to pull the two membranes into close proximity. It is debated, however, whether the energy generated suffices for membrane fusion.
View Article and Find Full Text PDFScience
August 2006
Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
Assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) syntaxin 1, SNAP-25, and synaptobrevin 2 is thought to be the driving force for the exocytosis of synaptic vesicles. However, whereas exocytosis is triggered at a millisecond time scale, the SNARE-mediated fusion of liposomes requires hours for completion, which challenges the idea of a key role for SNAREs in the final steps of exocytosis. We found that liposome fusion was dramatically accelerated when a stabilized syntaxin/SNAP-25 acceptor complex was used.
View Article and Find Full Text PDFJ Biol Chem
March 2004
Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
Synaptotagmins are membrane proteins that possess tandem C2 domains and play an important role in regulated membrane fusion in metazoan organisms. Here we show that both synaptotagmins I and II, the two major neuronal isoforms, can interact with the syntaxin/synaptosomal-associated protein of 25 kDa (SNAP-25) dimer, the immediate precursor of the soluble NSF attachment protein receptor (SNARE) fusion complex. A stretch of basic amino acids highly conserved throughout the animal kingdom is responsible for this calcium-independent interaction.
View Article and Find Full Text PDFJ Biol Chem
January 2004
Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
The release of hormones and neurotransmitters requires the fusion of cargo-containing vesicles with the plasma membrane. This process of exocytosis relies on three SNARE proteins, namely syntaxin and SNAP-25 on the target plasma membrane and synaptobrevin on the vesicular membrane. In this study we examined the molecular assembly pathway that leads to formation of the fusogenic SNARE complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!