Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae.

Genome Biol

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.

Published: March 2004

Background: Although the protein-coding sequences in the Saccharomyces cerevisiae genome have been studied and annotated extensively, much less is known about the extent and characteristics of the untranslated regions of yeast mRNAs.

Results: We developed a 'Virtual Northern' method, using DNA microarrays for genome-wide systematic analysis of mRNA lengths. We used this method to measure mRNAs corresponding to 84% of the annotated open reading frames (ORFs) in the S. cerevisiae genome, with high precision and accuracy (measurement errors +/- 6-7%). We found a close linear relationship between mRNA lengths and the lengths of known or predicted translated sequences; mRNAs were typically around 300 nucleotides longer than the translated sequences. Analysis of genes deviating from that relationship identified ORFs with annotation errors, ORFs that appear not to be bona fide genes, and potentially novel genes. Interestingly, we found that systematic differences in the total length of the untranslated sequences in mRNAs were related to the functions of the encoded proteins.

Conclusions: The Virtual Northern method provides a practical and efficient method for genome-scale analysis of transcript lengths. Approximately 12-15% of the yeast genome is represented in untranslated sequences of mRNAs. A systematic relationship between the lengths of the untranslated regions in yeast mRNAs and the functions of the proteins they encode may point to an important regulatory role for these sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC395734PMC
http://dx.doi.org/10.1186/gb-2003-5-1-r2DOI Listing

Publication Analysis

Top Keywords

mrna lengths
12
sequences mrnas
12
analysis mrna
8
saccharomyces cerevisiae
8
cerevisiae genome
8
untranslated regions
8
regions yeast
8
translated sequences
8
untranslated sequences
8
mrnas functions
8

Similar Publications

Oral intake of degalactosylated whey protein increases peripheral blood telomere length in young and aged mice.

Sci Rep

December 2024

Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.

In order to elucidate novel actions of degalactosylated whey protein (D-WP) in comparison with intact whey protein (WP), the effects of oral intake of D-WP on peripheral blood telomere length and telomerase were examined in young and aged mice. In young mice, peripheral blood telomere length was significantly elongated following oral intake of D-WP for 4 weeks. mRNA expression of both telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) was significantly increased in the peripheral blood following oral intake of D-WP for 4 weeks.

View Article and Find Full Text PDF

Circulating tumor cells and cell-free nucleic acids are novel diagnostic, prognostic and predictive tools for non-invasive and cost-effective cancer detection in liquid biopsy. Carbonic anhydrase IX (CAIX) has been proposed as a biomarker in urogenital tumors and urine sediment. Our aim was to evaluate CAIX full-length percentage (CAIX FL%) in urine-cell-free RNA (cfRNA) and its relationship with tumor-cell-associated RNA (TC-RNA).

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract. Sea conch peptide hydrolysate (CPH) was produced by enzymatic digestion of fresh conch meat with trypsin enzyme. To analyze the molecular composition, functional groups, and structural morphology of the hydrolysate, we employed liquid chromatography-mass spectrometry (LC-MS), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Comparative study of transcriptomic alterations in sepsis-induced acute liver injury: Deciphering the role of alternative splicing in mouse models.

Int Immunopharmacol

December 2024

Department of Emergency, Kashi Prefecture Second People's Hospital, Uygur Autonomous Region Kashi, Xinjiang, 844000, China; Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China. Electronic address:

Background: Sepsis represents a critical health crisis often leading to the failure of multiple organs, with the liver playing a pivotal role in controlling inflammation and defending against systemic infections. The exacerbation of liver damage can escalate sepsis severity, underscoring the necessity to delve into the molecular mechanisms underlying sepsis-induced acute liver injury (ALI). The role of alternative splicing (AS), a complex post-transcriptional mechanism, has been occasionally noted in relation to sepsis across different investigations.

View Article and Find Full Text PDF

Background: Interleukin 10 (IL-10) is uniquely positioned in the immune regulation of teleosts. Modifying the IL-10 pathway changes the teleost's disease susceptibility; however, there is no data on its post-transcriptional regulation. Trachinotus blochii is a high-value mariculture species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!