Two experiments determined the influence of an experimental reovirus-antibody complex vaccine on Mareks disease virus (MDV) vaccine when used in ovo. Designs were the same except that specific-pathogen-free (SPF) broiler eggs were used in Experiment 1 and commercial broiler eggs with maternal antibodies against reovirus were used in Experiment 2. At 18 days of incubation, embryos were separated into four groups and inoculated with either diluent, MDV vaccine, reovirus-antibody complex vaccine, or a combination of reovirus-antibody complex and MDV vaccine. At 5 days of age, half the chickens in each group were challenged with MDV. At 7 wk old, all were euthanatized, weighed, and examined. At 7 days of age, remaining chickens in each group were challenged with reovirus. At 21 days old, chickens were euthanatized and weighed. No vaccine adversely affected hatchability or posthatch mortality in SPF or commercial chickens. There were no significant differences in protection against reovirus challenge when vaccines were used separately or in combination, and lesion scores were nearly identical in all vaccinated groups in both experiments. However, percentage of protection against reovirus was lower in Experiment 2, indicating an adverse effect of maternal immunity on efficacy of the reovirus vaccine. There were no significant differences in protection against MDV when the vaccines were used separately or combined. Severity of MDV lesions was nearly identical in all vaccinated groups in both experiments. However, the combination of vaccines gave numerically lower protection against MDV than MDV vaccine alone. Use of a larger number of birds, as in field conditions, may result in statistically lower protection for the vaccine combination. Large field trials are needed to determine the potential of the reovirus-antibody complex vaccine.

Download full-text PDF

Source
http://dx.doi.org/10.1637/7020DOI Listing

Publication Analysis

Top Keywords

reovirus-antibody complex
20
complex vaccine
16
mdv vaccine
16
vaccine
12
mdv
8
broiler eggs
8
vaccine combination
8
days age
8
chickens group
8
group challenged
8

Similar Publications

Immunotherapy is showing promise for otherwise incurable cancers. Oncolytic viruses (OVs), developed as direct cytotoxic agents, mediate their antitumor effects via activation of the immune system. However, OVs also stimulate antiviral immune responses, including the induction of OV-neutralizing antibodies.

View Article and Find Full Text PDF

We investigated the effect of in ovo administered reovirus vaccines on the immune responses of specific-pathogen-free chickens. T-cell mitogenic responses to concanavalin A were numerically lower at 9 and 12 days of age and significantly lower at 6 days of age in birds vaccinated with a commercial reovirus vaccine compared with unvaccinated birds or birds vaccinated with an experimental reovirus-antibody complex vaccine. There were no significant differences in proportions of subpopulations of helper (CD4+CD8-) or cytotoxic (CD4-CD8+) T cells except at 12 days of age, when the percentages of CD4-CD8+ cells in the two vaccinated groups were statistically higher than in the nonvaccinated group.

View Article and Find Full Text PDF

A commercial reovirus vaccine alone or experimental reovirus vaccine plus antibody complex were inoculated into 18-day-old specific pathogen free (SPF) broiler embryos at 0.1 of the recommended chick dose. The following groups were used: group 1A was not vaccinated or challenged; group 1B was not vaccinated, but was challenged with virulent reovirus; group 2 received the vaccine complexed with 1/4 dilution of antiserum; group 3 received the vaccine with 1/8 dilution of antiserum; group 4 received the vaccine with 1/16 dilution of antiserum, and group 5 received vaccine alone.

View Article and Find Full Text PDF

Two experiments determined the influence of an experimental reovirus-antibody complex vaccine on Mareks disease virus (MDV) vaccine when used in ovo. Designs were the same except that specific-pathogen-free (SPF) broiler eggs were used in Experiment 1 and commercial broiler eggs with maternal antibodies against reovirus were used in Experiment 2. At 18 days of incubation, embryos were separated into four groups and inoculated with either diluent, MDV vaccine, reovirus-antibody complex vaccine, or a combination of reovirus-antibody complex and MDV vaccine.

View Article and Find Full Text PDF

The gastrointestinal (GI) tract contains a complex immune system that defends the host against a wide range of pathogens and toxins. The GI tract is also exposed to many environmental toxins that could adversely affect intestinal immunity, and few systems to study immunotoxicity of the GI tract have been described. We demonstrate that intestinal reovirus infection can be used as a system to assess the effects of toxins on intestinal and systemic immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!