Epicutaneous application of haptens to UV-exposed skin induces hapten-specific tolerance. This is mediated via regulatory T cells (Tr), as i.v. injection of T cells from UV-tolerized mice into naive animals renders the recipients unresponsive to the respective hapten. However, when UV-induced Tr are injected i.v. into sensitized mice, contact hypersensitivity (CHS) is not suppressed, suggesting that Tr inhibit the induction, but not the elicitation, of CHS and are inferior to T effector cells. As sensitization takes place in the lymph nodes, but elicitation occurs in the area of challenge, we postulated that Tr injected i.v. locate to the lymph nodes and not to the periphery and therefore only suppress the induction, not the elicitation, of CHS. Indeed, i.v. injection of Tr into sensitized mice did not inhibit CHS, although injection of Tr into the ears of sensitized mice suppressed the challenge. Inhibition was hapten specific, as injection of dinitrofluorobenzene (DNFB)-specific Tr into the ears of oxazolone (OXA)-sensitized mice did not affect challenge with OXA. However, when ears of OXA-sensitized mice were injected with DNFB-specific Tr and painted with DNFB before OXA challenge, CHS was suppressed. Inhibition correlated with the local expression of IL-10. Depletion studies and FACS analysis revealed that Tr express the lymph node-homing receptor L-selectin, but not the ligands for the skin-homing receptors E- and P-selectin, suggesting that UV-induced Tr, although able to inhibit T effector cells, do not suppress the elicitation of CHS upon i.v. injection, because they obviously do not migrate into the skin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.172.2.1036 | DOI Listing |
Nat Commun
January 2025
Carisma Therapeutics Inc, Philadelphia, PA, USA.
We previously developed human CAR macrophages (CAR-M) and demonstrated redirection of macrophage anti-tumor function leading to tumor control in immunodeficient xenograft models. Here, we develop clinically relevant fully immunocompetent syngeneic models to evaluate the potential for CAR-M to remodel the tumor microenvironment (TME), induce T cell anti-tumor immunity, and sensitize solid tumors to PD1/PDL1 checkpoint inhibition. In vivo, anti-HER2 CAR-M significantly reduce tumor burden, prolong survival, remodel the TME, increase intratumoral T cell and natural killer (NK) cell infiltration, and induce antigen spreading.
View Article and Find Full Text PDFRespirology
January 2025
School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia.
Background And Objective: Asthma-COPD overlap (ACO) is characterized by patients exhibiting features of both asthma and COPD. Currently, there is no specific treatment for ACO. This study aimed to investigate the therapeutic potential of targeting CD131, a shared receptor subunit for IL-3, IL-5 and GM-CSF, in ACO development and in preventing acute viral exacerbations.
View Article and Find Full Text PDFCephalalgia
January 2025
Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA.
Background: Women with endometriosis are more likely to have migraine. The mechanisms underlying this co-morbidity are unknown. Prolactin, a neurohormone secreted and released into circulation from the anterior pituitary, can sensitize sensory neurons from female, but not male, rodents, monkeys and human donors.
View Article and Find Full Text PDFCell Death Dis
January 2025
Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
Mitochondrial oxidative phosphorylation (OXPHOS) is a therapeutic vulnerability in glycolysis-deficient cancers. Here we show that inhibiting OXPHOS similarly suppresses the proliferation and tumorigenicity of glycolytically competent colorectal cancer (CRC) cells in vitro and in patient-derived CRC xenografts. While the increased glycolytic activity rapidly replenished the ATP pool, it did not restore the reduced production of aspartate upon OXPHOS inhibition.
View Article and Find Full Text PDFNat Genet
January 2025
Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Members of the KMT2C/D-KDM6A complex are recurrently mutated in urothelial carcinoma and in histologically normal urothelium. Here, using genetically engineered mouse models, we demonstrate that Kmt2c/d knockout in the urothelium led to impaired differentiation, augmented responses to growth and inflammatory stimuli and sensitization to oncogenic transformation by carcinogen and oncogenes. Mechanistically, KMT2D localized to active enhancers and CpG-poor promoters that preferentially regulate the urothelial lineage program and Kmt2c/d knockout led to diminished H3K4me1, H3K27ac and nascent RNA transcription at these sites, which leads to impaired differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!