1. The ability of the endogenous fatty acid amide, cis-oleamide (ODA), to bind to and activate cannabinoid CB(1) and CB(2) receptors was investigated. 2. ODA competitively inhibited binding of the nonselective cannabinoid agonist [(3)H]CP55,940 and the selective CB(1) antagonist [(3)H]SR141716A to rat whole-brain membranes with K(i) values of 1.14 microm (0.52-2.53 microm, Hill slope=0.80, n=6) and 2.63 microm (0.62-11.20 microm, Hill slope=0.92, n=4), respectively. AEA inhibited [(3)H]CP55,940 binding in rat whole-brain membranes with a K(i) of 428 nm (346-510 nm, Hill slope=-1.33, n=3). 3. ODA competitively inhibited [(3)H]CP55,940 binding in human CB(1) (hCB(1)) cell membranes with a K(i) value of 8.13 microm (4.97-13.32 microm, n=2). In human CB(2) transfected (hCB(2)) HEK-293T cell membranes, 100 microm ODA produced only a partial (42.5+/-7%) inhibition of [(3)H]CP55,940 binding. 4. ODA stimulated [(35)S]GTPgammaS binding in a concentration-dependent manner (EC(50)=1.64 microm (0.29-9.32 microm), R(2)=0.99, n=4-9), with maximal stimulation of 188+/-9% of basal at 100 microm. AEA stimulated [(35)S]GTPgammaS binding with an EC(50) of 10.43 microm (4.45-24.42 microm, R(2)=1.00, n=3, 195+/-4% of basal at 300 microm). Trans-oleamide (trans-ODA) failed to significantly stimulate [(35)S]GTPgammaS binding at concentrations up to 100 microm. 5. ODA (10 microm)-stimulated [(35)S]GTPgammaS binding was reversed by the selective CB(1) antagonist SR141716A (IC(50)=2.11 nm (0.32-13.77 nm), R(2)=1.00, n=6). 6. The anatomical distribution of ODA-stimulated [(35)S]GTPgammaS binding in rat brain sections was indistinguishable from that of HU210. Increases of similar magnitude were observed due to both agonists in the striatum, cortex, hippocampus and cerebellum. 7. ODA (10 microm) significantly inhibited forskolin-stimulated cyclic AMP (cAMP) accumulation in mouse neuroblastoma N1E 115 cells (P=0.02, n=11). ODA-mediated inhibition was completely reversed by 1 microm SR141716A (P<0.001, n=11) and was also reversed by pretreatment with 300 ng ml(-1) pertussis toxin (P<0.001, n=6). 8. These data demonstrate that ODA is a full cannabinoid CB(1) receptor agonist. Therefore, in addition to allosteric modulation of other receptors and possible entourage effects due to fatty acid amide hydrolase inhibition, the effects of ODA may be mediated directly via the CB(1) receptor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574194 | PMC |
http://dx.doi.org/10.1038/sj.bjp.0705607 | DOI Listing |
Anesthesiology
November 2024
Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to End Opioid Misuse, School of Medicine, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania.
Br J Pharmacol
April 2024
Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.
Background And Purpose: Whereas biased agonism on the 5-HT receptor has been ascribed to hallucinogenic properties of psychedelics, no information about biased inverse agonism on this receptor is available. In schizophrenia, increased 5-HT receptor constitutive activity has been suggested, highlighting the therapeutic relevance of inverse agonism. This study characterized the modulation of G protein activity promoted by different drugs, commonly considered as 5-HT receptor antagonists, in post-mortem human brain cortex.
View Article and Find Full Text PDFPediatr Res
June 2024
Biomedical Research Foundation, Hospital Clínico San Calos-IdISSC, Madrid, Spain.
Background: Neonatal rats can manifest post-stroke mood disorders (PSMD) following middle cerebral artery occlusion (MCAO). We investigated whether cannabidiol (CBD) neuroprotection, previously demonstrated in neonatal rats after MCAO, includes prevention of PSMD development.
Methods: Seven-day-old Wistar rats (P7) underwent MCAO and received either vehicle or 5 mg/kg CBD treatment.
Methods Mol Biol
July 2023
Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain.
Heterotrimeric guanine nucleotide-binding proteins (G proteins) are the very first effector in signal transduction events triggered by G-protein-coupled receptors (GPCRs). One of the most widely used approaches for determining GPCR activity in native tissue is based on the binding of [S]GTPγS. Classically, an heterogeneous procedure including a filtration step has been used, but a modification of the protocol including an immunoprecipitation step has allowed the specific discrimination of the contribution of the different Gα subunit subtypes to the effect of each ligand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!