The extremely radiation resistant bacterium, Deinococcus radiodurans, contains a spectrum of genes that encode for multiple activities that repair DNA damage. We have cloned and expressed the product of three predicted uracil-DNA glycosylases to determine their biochemical function. DR0689 is a homologue of the Escherichia coli uracil-DNA glycosylase, the product of the ung gene; this activity is able to remove uracil from a U : G and U : A base pair in double-stranded DNA and uracil from single-stranded DNA and is inhibited by the Ugi peptide. DR1751 is a member of the class 4 family of uracil-DNA glycosylases such as those found in the thermophiles Thermotoga maritima and Archaeoglobus fulgidus. DR1751 is also able to remove uracil from a U : G and U : A base pair; however, it is considerably more active on single-stranded DNA. Unlike its thermophilic relatives, the enzyme is not heat stable. Another putative enzyme, DR0022, did not demonstrate any appreciable uracil-DNA glycosylase activity. DR0689 appears to be the major activity in the organism based on inhibition studies with D. radiodurans crude cell extracts utilizing the Ugi peptide. The implications for D. radiodurans having multiple uracil-DNA glycosylase activities and other possible roles for these enzymes are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dnarep.2003.10.011DOI Listing

Publication Analysis

Top Keywords

uracil-dna glycosylase
16
multiple uracil-dna
8
glycosylase activities
8
deinococcus radiodurans
8
uracil-dna glycosylases
8
remove uracil
8
uracil base
8
base pair
8
single-stranded dna
8
ugi peptide
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!