Human sera have shown antitumor effects mediated by tumor-specific immunoglobulin M (IgM) antibodies. Most people who have cytotoxic serum are in good health and show no evidence of exposure to tumor antigens. We characterized the serum of a healthy female adult that was highly lytic to a neuroblastoma cell line via IgM-activated complement (>60% of malignant cells were killed during the 60-min assay). Complement-dependent lysis was not mediated by other classes of serum antibodies (data not shown) which is consistent with the findings of Ollert et al. To identify the target antigen on neuroblastoma cells, we fractionated neuroblastoma cell lysates by ion-exchange chromatography. In the fraction that showed maximal IgM binding, the dominant protein was identified as the 47-kDa translational elongation factor 1alpha (eEF1alpha). We used the donor's B-cells to create hybridomas producing the antibody (B12.6.22) that bound to neuroblastoma cells and mediated cytotoxicity. This antibody recognized eEF1alpha in a specific manner. Sequence analysis of the heavy chain of B12.6.22 showed usage of VH3-23 and JH6 gene segments, with no somatic mutation. The structural similarity of B12.6.22 to antibodies of the innate immune system supports the assumption that natural antibodies are a potential source of therapeutic antibodies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-0039.2004.00171.xDOI Listing

Publication Analysis

Top Keywords

neuroblastoma cells
12
elongation factor
8
factor 1alpha
8
neuroblastoma cell
8
neuroblastoma
5
antibodies
5
cloning human
4
human antibody
4
antibody directed
4
directed human
4

Similar Publications

Crisdesalazine alleviates inflammation in an experimental autoimmune encephalomyelitis multiple sclerosis mouse model by regulating the immune system.

BMC Neurosci

January 2025

Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.

Microglia/macrophages participate in the development of and recovery from experimental autoimmune encephalomyelitis (EAE), and the macrophage M1 (pro-inflammatory)/M2 (anti-inflammatory) phase transition is involved in EAE disease progression. We evaluated the efficacy of crisdesalazine (a novel microsomal prostaglandin E2 synthase-1 inhibitor) in an EAE model, including its immune-regulating potency in lipopolysaccharide-stimulated macrophages, and its neuroprotective effects in a macrophage-neuronal co-culture system. Crisdesalazine significantly alleviated clinical symptoms, inhibited inflammatory cell infiltration and demyelination in the spinal cord, and altered the phase of microglial/macrophage and regulatory T cells.

View Article and Find Full Text PDF

Background: High age is the biggest risk factor for Alzheimer's disease (AD). Approved drugs that slow down the aging process have the potential to be repurposed for the primary prevention of AD. The aim of our project was to use a reverse translational approach to identify such drug candidates in epidemiological data followed by validation in cell-based models and animal models of aging and AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: While disease-modifying treatments that reduce Aβ have been recently approved by the FDA, the identification of novel therapeutic targets and strategies that target underlying mechanisms to delay the AD development are still needed. Abnormal brain energy homeostasis and mitochondria dysfunction are observed early in AD. Therefore, the development of treatments to restore these defects could be beneficial.

View Article and Find Full Text PDF

Background: Monoclonal antibodies have emerged as a leading therapeutic agent for the treatment of disease, including Alzheimer's disease. Such antibodies, however, are expensive and timely to produce and require frequent dosing regimens to ensure disease-modifying effects. Synthetic in vitro-transcribed mRNA encoding antibodies presents a promising alternative to conventional passive immunotherapy and overcomes the need to generate recombinant antibodies.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder marked by progressive memory loss and cognitive decline. The precise molecular mechanisms underlying AD pathogenesis remain uncertain, underscoring the need for further investigation to identify novel therapeutic targets. We recently demonstrated that mitochondrial calcium (Ca) overload significantly contributes to the development of AD, capable of independently driving AD-like pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!