Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4.

Biochem J

Terry Fox Molecular Oncology Group, Department of Oncology, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, QC, Canada H3T 1E2.

Published: April 2004

The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 ( Drosophila arginine methyltransferases 1-9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homologues of PRMT1, PRMT4, PRMT5 and PRMT7. Other DART family members have a closer resemblance to PRMT1, but do not have identifiable homologues. All nine genes are expressed in Drosophila at various developmental stages. DART1 and DART4 have arginine methyltransferase activity towards substrates, including histones and RNA-binding proteins. Amino acid analysis of the methylated arginine residues confirmed that both DART1 and DART4 catalyse the formation of asymmetrical dimethylated arginine residues and they are type I arginine methyltransferases. The presence of PRMTs in D. melanogaster suggest that flies are a suitable genetic system to study arginine methylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224071PMC
http://dx.doi.org/10.1042/BJ20031176DOI Listing

Publication Analysis

Top Keywords

arginine methyltransferases
20
dart1 dart4
16
arginine
10
protein arginine
8
arginine methylation
8
arginine residues
8
methyltransferases
5
dart1
5
characterization drosophila
4
drosophila protein
4

Similar Publications

Background: Cerebral creatine deficiency disorders (CCDD) are rare diseases caused by defects in the enzymes L-arginine: glycine amidinotransferase (AGAT) or guanidinoacetate-N-methyltransferase (GAMT), which are involved in synthesis of creatine; or by a defect in the creatine transporter (CRTR), which is essential for uptake of creatine as important energy source into the target cells. Patients with CCDD can present with a variety of unspecific symptoms: global developmental delay, speech-language disorder, behavioral abnormalities and seizures. Early treatment initiation is essential in AGAT and GAMT deficiencies to achieve a favorable outcome.

View Article and Find Full Text PDF

Discovery of PRMT5 N-Terminal TIM Barrel Ligands from Machine-Learning-Based Virtual Screening.

ACS Omega

January 2025

Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.

Protein arginine methyltransferase 5 (PRMT5), which symmetrically dimethylates cytosolic and nuclear proteins, has been demonstrated as an important cancer therapeutic target. In recent years, many advanced achievements in PRMT5 inhibitor development have been made. Most PRMT5 inhibitors in the clinical trial focus on targeting the C-terminal catalytic domain, whereas developing small molecules to interrupt the PRMT5/pICLn (methylosome subunit) protein-protein interface is also of great importance for inhibiting PRMT5.

View Article and Find Full Text PDF

Biomedical Effects of Protein Arginine Methyltransferase Inhibitors.

J Biol Chem

January 2025

Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, United States. Electronic address:

Protein arginine methyltransferases (PRMTs) are enzymes that catalyze the methylation of arginine residues in eukaryotic proteins, playing critical roles in modulating diverse cellular processes. The importance of PRMTs in the incidence and progression of a wide range of diseases, particularly cancers, such as breast, liver, lung, colorectal cancer, lymphoma, leukemia, and acute myeloid leukemia (AML) is increasingly recognized. This underscores the critical need for the development of effective PRMT inhibitors as therapeutic intervention.

View Article and Find Full Text PDF

Hemophagocytic lymphohistiocytosis (HLH) is a rare but aggressive and potentially lethal hyperinflammatory syndrome characterized by pathologic immune activation and excessive production of proinflammatory cytokines leading to tissue damage and multisystem organ failure. There is an urgent need for the discovery of novel targets and development of therapeutic strategies to treat this rare but deadly syndrome. Protein Arginine Methyltransferase 5 (PRMT5) mediates T cell-based inflammatory responses, making it a potential actionable target for the treatment of HLH.

View Article and Find Full Text PDF

PRMT6 promotes colorectal cancer progress via activating MYC signaling.

J Transl Med

January 2025

Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, JiNan, 250012, China.

Colorectal cancer (CRC) remains a major global health challenge, with high rates of incidence and mortality. This study investigates the role of protein arginine methyltransferase 6 (PRMT6) as an oncogene in CRC and its mechanistic involvement in tumor progression. We found that PRMT6 is significantly overexpressed in CRC tissues compared to adjacent normal tissues and is associated with poorer patient survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!