Nucleoside base modifications can alter the structures, dynamics, and metal ion binding properties of transfer RNA molecules and are important for accurate aminoacylation and for maintaining translational fidelity and efficiency. The unmodified anticodon stem-loop from Escherichia coli tRNA(Phe) forms a trinucleotide loop in solution, but Mg(2+) and dimethylallyl modification of A(37) N6 disrupt the loop conformation and increase the mobility of the loop and loop-proximal nucleotides. We have used NMR spectroscopy to investigate the binding and structural effects of multivalent cations on the unmodified and dimethylallyl-modified anticodon stem-loops from E. coli tRNA(Phe). The divalent cation binding sites were probed using Mn(2+) and Co(NH(3))(6)(3+). These ions bind along the major groove of the stem and associate with the anticodon loop on the major groove side in a nonspecific manner. Co(NH(3))(6)(3+) stabilizes the U-turn conformation of the loop in the dimethylallyl-modified molecule, and the chemical shift changes that accompany Co(NH(3))(6)(3+) binding are similar to those observed with the addition of Mg(2+). The base-phosphate and base-2'-OH hydrogen bonds that characterize the UNR U-turn motif lead to spectral signatures in the form of unusual (15)N and (1)H chemical shifts and reduced solvent exchange of the U(33) 2'-OH and N3H protons. The unmodified molecule also displays spectral features of the U-turn fold in the presence of Co(NH(3))(6)(3+), but the loop has additional conformations and is dynamic. The results indicate that charge neutralization by a polyvalent cation is sufficient to promote formation of the U-turn fold. However, base modification is necessary to destabilize competing alternative conformers even for a purine-rich loop sequence that is predicted to have strongly favorable base stacking energy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0353676DOI Listing

Publication Analysis

Top Keywords

coli trnaphe
12
metal ion
8
anticodon stem-loop
8
stem-loop escherichia
8
escherichia coli
8
major groove
8
u-turn fold
8
loop
7
u-turn
5
ion stabilization
4

Similar Publications

Imino chemical shift assignments of tRNA, tRNA and tRNA from Escherichia coli.

Biomol NMR Assign

December 2024

Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, IBPC, 13 rue Pierre et Marie Curie, Paris, 75005, France.

Transfer RNAs (tRNAs) are an essential component of the protein synthesis machinery. In order to accomplish their cellular functions, tRNAs go through a highly controlled biogenesis process leading to the production of correctly folded tRNAs. tRNAs in solution adopt the characteristic L-shape form, a stable tertiary conformation imperative for the cellular stability of tRNAs, their thermotolerance, their interaction with protein and RNA complexes and their activity in the translation process.

View Article and Find Full Text PDF

is a leading cause of urinary tract infections and a common commensal of the gastrointestinal tract. Our recent study (JB) showed that strain BL95 employs a novel contact-dependent killing system against enteric bacteria in the mouse gut and in vitro. To uncover the genetic determinants of this system, we performed whole-genome sequencing of BL95 and compared it with 98 complete genomes of .

View Article and Find Full Text PDF

Molecular mechanism of tRNA binding by the Escherichia coli N7 guanosine methyltransferase TrmB.

J Biol Chem

May 2023

Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada. Electronic address:

Among the large and diverse collection of tRNA modifications, 7-methylguanosine (mG) is frequently found in the tRNA variable loop at position 46. This modification is introduced by the TrmB enzyme, which is conserved in bacteria and eukaryotes. However, the molecular determinants and the mechanism for tRNA recognition by TrmB are not well understood.

View Article and Find Full Text PDF

Consecutive Ribosomal Incorporation of α-Aminoxy/α-Hydrazino Acids with l/d-Configurations into Nascent Peptide Chains.

J Am Chem Soc

November 2021

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

α-Aminoxy and α-hydrazino acids are β-amino acid analogs with β-carbons replaced by oxygen and nitrogen, respectively. Such heteroatoms dictate the folding of peptides into specific secondary structures called pseudo-γ-turns. Achiral α-aminoxyacetic acid (Gly) and l-α-hydrazinophenylalanine (l-Phe) have been shown to be suitable for single incorporation during ribosomal translation, but whether ribosomes tolerate other types of α-aminoxy/α-hydrazino acids with l/d-configurations is unknown.

View Article and Find Full Text PDF

Publishing, discussing, envisioning, modeling, designing and experimentally determining RNA three-dimensional (3D) structures involve preparation of two-dimensional (2D) drawings that depict critical functional features of the subject molecules, such as noncanonical base pairs and protein contacts. Here, we describe RiboDraw, new software for crafting these drawings. We illustrate the features of RiboDraw by applying it to several RNAs, including the tRNA-Phe, the P4-P6 domain of ribozyme, a -1 ribosomal frameshift stimulation element from beet western yellows virus and the 5' untranslated region of SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!