An MRI method for quantification of cerebral blood volume (CBV) in time-course studies of angiogenesis is described. Angiogenesis was stimulated by acclimation to hypoxia. The change in relaxation rate, R2, which is relatively sensitive to the microvasculature, was quantified before and after infusion of a superparamagnetic vascular contrast agent (MION). The DeltaR2 was measured in serum and brain parenchyma with a multiecho sequence. In vitro and in vivo calibration curves of MION concentration vs. R2 were approximated by a linear function. CBV was 3.14 +/- 0.32% (mean +/- SE, n=13) and 6.42 +/- 0.54% (n=4) before and after acclimation. A second acclimated group was hemodiluted to control for polycythemia. CBV was not significantly different between hemodiluted and nonhemodiluted groups. In animals where NMR measurements were taken before and after acclimation, there was a 120% increase in CBV. The NMR technique was validated using quantitative morphometrics, which showed an increase of 147% in CBV with acclimation. We found a linear correlation between MRI and the morphometric results for CBV, as well as demonstrating a quantitative equivalence for relative changes in CBV. This article describes a simple, repeatable method of imaging brain microvascular volume using a plasma-based contrast agent that can be applied to longitudinal studies of angiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.10660DOI Listing

Publication Analysis

Top Keywords

studies angiogenesis
8
contrast agent
8
cbv
7
monitoring angiogenesis
4
angiogenesis brain
4
brain steady-state
4
steady-state quantification
4
quantification deltar2
4
deltar2 mion
4
mion infusion
4

Similar Publications

Background: Paracoccidioidomycosis (PCM) is a systemic mycosis endemic and limited to Latin America. Brazil is responsible for more than 80% of diagnosed cases in the world. Since PCM is not a notifiable disease, there are still no accurate data on its incidence in Brazil.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

RNA nanoparticles, derived from the packaging RNA three-way junction motif (pRNA-3WJ) of the bacteriophage phi29 DNA packaging motor, have been demonstrated to be thermodynamically and chemically stable, with promise as a nanodelivery system. : A previous study showed that RNA nanoparticles with antiangiogenic aptamers (anti-vascular endothelial growth factor (VEGF) and anti-angiopoietin-2 (Ang2) aptamers) inhibited cell proliferation via WST-1 assay. To further investigate the antiangiogenic potential of these RNA nanoparticles, a modified three-dimensional (3D) spheroid sprouting assay model of human umbilical vein endothelial cells was utilized in the present study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!