Conifers have evolved constitutive and inducible defense mechanisms to help in both wound healing and defense against attack by bark beetles and other organisms. These defenses include oleoresin, phenolics, and static structures in secondary phloem, such as lignified cells and calcium oxalate crystals, that create physical barriers. We used a phylogenetic approach to investigate the defense anatomy of conifer stems of 13 species from five families following treatment with methyl jasmonate (MJ), a compound that induces defense responses in stems of several Pinaceae species. Methyl jasmonate induced a response similar to wounding except that the response was not accompanied by lesion formation, necrosis or a hypersensitive response. In the Pinaceae species studied, MJ induced polyphenolic parenchyma (PP) cell activation and xylem traumatic resin duct (TD) formation. Members of the Taxodiaceae, which are not known to produce large quantities of resin, showed massive xylem TD formation and surface resinosis following MJ treatment. Treatment with MJ caused members of the Araucariaceae and Cupressaceae to form axial phloem resin ducts but not xylem ducts, whereas Podocarpaceae species showed no induction of resin-producing structures. All species treated with MJ showed phenolic deposition in PP cells, and early lignification of phloem fibers was observed in most of the non-Pinaceae species. We conclude that, although evolution of resin-producing structures occurred independently in conifer lineages, MJ seems to induce resin production regardless of tissue location, as well as inducing deposition of phenolic compounds. Co-evolution of conifer defensive strategies and bark beetle pests is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/24.3.251 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!