Free iron is capable of stimulating the production of free radicals which cause oxidative damage such as lipid peroxidation. One of the most important mechanisms of antioxidant defense is thus the sequestration of iron in a redox-inactive form by transferrin. In diabetes mellitus, increased oxidative stress and lipid peroxidation contribute to chronic complications but it is not known if this is related to abnormalities in transferrin function. In this study we investigated the role of transferrin concentration and glycation. The antioxidant capacity of apotransferrin to inhibit lipid peroxidation by iron-binding decreased in a concentration-dependent manner from 89% at > or = 2 mg/ml to 42% at 0.5 mg/ml. Pre-incubation of apotransferrin with glucose for 14 days resulted in a concentration-dependent increase of glycation: 1, 5 and 13 micromol fructosamine/g transferrin at 0, 5.6 and 33.3 mmol/l glucose respectively, p < 0.001. This was accompanied by a decrease in the iron-binding antioxidant capacity of apotransferrin. In contrast, transferrin glycation by up to 33.3 mmol/l glucose did not affect chemiluminescence-quenching antioxidant capacity, which is iron-independent. Colorimetric evaluation of total iron binding capacity in the presence of an excess of iron (iron/transferrin molar ratio = 2.4) also decreased from 0.726 to 0.696 and 0.585mg/g transferrin after 0, 5.6 and 33.3 mmol/l glucose, respectively, p < 0.01. In conclusion, these results suggest that lower transferrin concentration and its glycation can, by enhancing the pro-oxidant effects of iron, contribute to the increased lipid peroxidation observed in diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10715760310001600390 | DOI Listing |
Front Pharmacol
January 2025
Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
Background And Aims: Ferroptosis, a novel concept of programmed cell death proposed in 2012, in kidney disease, has garnered significant attention based on evidence of abnormal iron deposition and lipid peroxidation damage in the kidney. Our study aim to examine the trends and future research directions in the field of ferroptosis in kidney disease, so as to further explore the target or treatment strategy for clinical treatment of kidney disease.
Material And Methods: A thorough survey using the Web of Science Core Collection, focusing on literature published between 2012 and 2024 examining the interaction between kidney disease and ferroptosis was conducted.
J Pathol
January 2025
Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
Ferroptosis has been characterised by disruption of the cell membrane through iron-related lipid peroxidation. However, regulation of iron homeostasis in lung cancer cells that are resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) remains unclear. Transcriptome analysis identified a significant downregulation of apoptosis-associated tyrosine kinase (AATK) mRNA expression in gefitinib-resistant PC9 (PC9-GR) cells, which were found to be more susceptible to ferroptosis inducers.
View Article and Find Full Text PDFToxicol Mech Methods
January 2025
Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Babulde, Shirpur, 425405 Maharashtra, India.
Adverse drug reactions (ADR) remain a challenge in modern healthcare, particularly given the increasing complexity of therapeutics. WHO's definition of an adverse drug reaction as a response to a drug that is noxious and unintended and occurs at doses normally used in man for the prophylaxis, diagnosis or therapy of disease, or for modification of physiological function. This definition underscores the importance of monitoring and mitigating unintended drug effects, particularly for widely used medications like valproic acid (VPA).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!