A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. | LitMetric

Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress.

J Bacteriol

Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.

Published: January 2004

In this report we describe the cloning, organization, and promoter analysis of the Staphylococcus aureus thioredoxin (trxA) and thioredoxin reductase (trxB) genes and their transcription in response to changes in oxygen concentration and to oxidative stress compounds. Northern analysis showed that the S. aureus trxA and trxB genes were transcribed equally well in aerobic and anaerobic conditions. Several oxidative stress compounds were found to rapidly induce transcription of the trxA and trxB genes. The most pronounced effects were seen with diamide, a thiol-specific oxidant that promotes disulfide bond formation; menadione, a redox cycling agent; and tau-butyl hydroperoxide, an organic peroxide. In each case the induction was independent of the general stress sigma factor sigma(B). These studies show that the S. aureus trxA and trxB genes are upregulated following exposure to these oxidative stress agents, resulting in increased disulfide bond formation. In contrast, no effect of hydrogen peroxide on induction of the trxA and trxB genes was seen. We also show that the S. aureus thioredoxin reductase appears to be essential for growth. This observation, coupled with structural differences between the bacterial and mammalian thioredoxin reductases, suggests that it may serve as a target for the development of new antimicrobials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC305758PMC
http://dx.doi.org/10.1128/JB.186.2.326-334.2004DOI Listing

Publication Analysis

Top Keywords

trxb genes
20
trxa trxb
16
aureus thioredoxin
12
thioredoxin reductase
12
oxidative stress
12
staphylococcus aureus
8
stress compounds
8
aureus trxa
8
disulfide bond
8
bond formation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!