Objective: Neuroimaging findings have identified lower cortical gray matter volume in schizophrenia. Apoptosis (programmed cell death) has been proposed as a contributing pathophysiological mechanism. Levels of antiapoptotic Bcl-2 protein are low in the temporal cortex of schizophrenia patients. Bcl-2 interacts with the proapoptotic Bax protein at an upstream checkpoint to regulate the activation of apoptosis by caspase-3 and other proteolytic caspase proteins. A high Bax/Bcl-2 ratio is associated with greater vulnerability to apoptotic activation, while a high caspase-3 level is often associated with apoptotic activity. It was hypothesized that the Bax/Bcl-2 ratio, but not caspase-3, would be high in the temporal cortex of patients with chronic schizophrenia.
Method: Bax, Bcl-2, and caspase-3 proteins were measured by semiquantitative Western blot in Brodmann's area 21 (middle temporal gyrus) of postmortem tissue from patients with schizophrenia (N=15), bipolar disorder (N=15), or major depression (N=15) and nonpsychiatric comparison subjects (N=15).
Results: The Bax/Bcl-2 ratio was 50% higher in the schizophrenia patients than the nonpsychiatric comparison subjects. The level of caspase-3 (inactive zymogen and activated subunits) was not significantly different.
Conclusions: The higher Bax/Bcl-2 ratio suggests that cortical cells are vulnerable to apoptosis in chronic schizophrenia. However, the normal caspase-3 level suggests that apoptosis is not active in this illness phase. Furthermore, the results appear to distinguish the pathophysiology of schizophrenia from most classic neurodegenerative disorders, in which postmortem caspase-3 levels are high. Further studies are needed to investigate the implications of abnormal apoptotic proteins in schizophrenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1176/appi.ajp.161.1.109 | DOI Listing |
Zhejiang Da Xue Xue Bao Yi Xue Ban
January 2025
School of Medicine, Hangzhou City University, Zhejiang Provincial Key Laboratory of Novel Targets and Drug Study for Neural Repair, Hangzhou 310015, China.
Objectives: To investigate the protective effects and underlying mechanisms of extract on motor dysfunction in mouse model of Parkinson's disease (PD).
Methods: Eighty C57BL/6 male mice were randomly divided into five groups: control group, PD model group, levodopa treatment group (positive control group), low-dose GP treatment group (LD-GP group), and high-dose GP treatment group (HD-GP group), with 16 mice per group. The PD model was induced by injection of 6-hydroxydopamine into the substantia nigra pars reticulata in mice of last 5 groups.
PLoS One
January 2025
Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.
Cholangiocarcinoma (CCA) poses a significant healthcare challenge due to the limited effects of chemotherapeutic drugs. Natural products have gained widespread attention in cancer research according to their promising anti-cancer effects with minimal adverse side effects. This study explored the potential of Tacca chantrieri (TC), a plant rich in bioactive compounds, as a therapeutic agent for CCA.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
January 2025
Department of Cardiology, Sanya Central Hospital, Sanya 572000, China.
Objectives: To explore the mechanism that mediate the therapeutic effect of quercetin on heart failure.
Methods: We searched the TCMSP and Swiss ADME databases for the therapeutic targets of quercetin and retrieved heart failure targets from the Genecards and OMIM databases. The intersecting targets were analyzed with GO and KEGG pathway analysis using DAVID database, and the key genes were identified PPI analysis.
Bioelectromagnetics
January 2025
Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey.
The widespread use of wireless communication technologies has increased human exposure to radiofrequency electromagnetic fields (RF-EMFs). Considering the brain's close proximity to mobile phones and its entirely electrical transmission network, it emerges as the organ most profoundly impacted by the RF field. This study aims to investigate the potential effects of RF radiation on cell viability, apoptosis, and gene expressions in glioblastoma cells (U118-MG) at different exposure times (1, 24, and 48 h).
View Article and Find Full Text PDFClin Exp Emerg Med
January 2025
Department of Emergency Medicine, Chungbuk National University Hospital, 776, Sunhwan-ro, Seowon-gu, Cheongju, Republic of Korea.
Objective: The study aims to investigate the long-term impacts of traumatic brain injury (TBI) on neuroinflammation and neuronal apoptosis in pediatric and adult mice, specifically focusing on how age-at-injury influences these processes.
Methods: Controlled cortical impact (CCI) was used to induce TBI in pediatric (21-25 days old) and adult (8-12 weeks old) C57Bl/6 male mice. Neuroinflammation was evaluated through immunoreactivity for Iba-1 and GFAP, while apoptosis was assessed using markers such as Bax, Bcl- 2, and pro-caspase-3.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!