The objective of this article is to present a framework for cortical current source reconstruction that extracts a center and magnitude of electrical brain activity from EEG signals. High-resolution EEG recordings, a subject-specific MRI-based electromagnetic boundary element method (BEM) model, and a channel reduction technique are used. This new geometric measure combines the magnitude and spatial location of electrical brain activity of each of the identified subsets of channels into a three-dimensional resultant vector. The combination of the two approaches constitutes a source reconstruction scanning technique that provides a real-time estimation of cortical centers that can be tracked over time. Simulations demonstrate that the ability of this method to find the best-fit cortical location is more robust both in terms of accuracy and precision than traditional approaches for single-source conditions. Experimental validation demonstrates its ability to localize and separate cortical activity in plausible sites for two different motor tasks. Finally, this method provides a statistical measure to compare electrical brain activity associated with different motor tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00004691-200309000-00005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!