Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Arabidopsis seed coat epidermis undergoes a complex process of differentiation that includes the biosynthesis and secretion of large quantities of pectinaceous mucilage, cytoplasmic rearrangement, and secondary cell wall biosynthesis. Mutations in MUM4 (MUCILAGE-MODIFIED4) lead to a decrease in seed coat mucilage and incomplete cytoplasmic rearrangement. We show that MUM4 encodes a putative NDP-l-rhamnose synthase, an enzyme required for the synthesis of the pectin rhamnogalacturonan I, the major component of Arabidopsis mucilage. This result suggests that the synthesis of monosaccharide substrates is a limiting factor in the biosynthesis of pectinaceous seed coat mucilage. In addition, the reduced cytoplasmic rearrangement observed in the absence of a key enzyme in pectin biosynthesis in mum4 mutants establishes a causal link between mucilage production and cellular morphogenesis. The cellular phenotype seen in mum4 mutants is similar to that of several transcription factors (AP2 [APETALA2], TTG1 [TRANSPARENT TESTA GLABRA1], TTG2 MYB61, and GL2 [GLABRA2]). Expression studies suggest that MUM4 is developmentally regulated in the seed coat by AP2, TTG1, and GL2, whereas TTG2 and MYB61 appear to be regulating mucilage production through alternate pathway(s). Our results provide a framework for the regulation of mucilage production and secretory cell differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC316309 | PMC |
http://dx.doi.org/10.1104/pp.103.035519 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!