The apomyoglobin mutant W7FW14F forms amyloid-like fibrils at physiological pH. We examined the kinetics of fibrillogenesis using three techniques: the time dependence of the fluorescence emission of thioflavin T and 1-anilino-8-naphthalenesulfonate, circular dichroism measurements, and electron microscopy. We found that in the early stage of fibril formation, non-native apomyoglobin molecules containing beta-structure elements aggregate to form a nucleus. Subsequently, more molecules aggregate around the nucleus, thereby resulting in fibril elongation. We evaluated by MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) the cytotoxicity of these aggregates at the early stage of fibril elongation versus mature fibrils and the wild-type protein. Similar to other amyloid-forming proteins, cell toxicity was not due to insoluble mature fibrils but rather to early pre-fibrillar aggregates. Propidium iodide uptake showed that cell toxicity is the result of altered membrane permeability. Phalloidin staining showed that membrane damage is not associated to an altered cell shape caused by changes in the cytoskeleton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M308207200 | DOI Listing |
Proteins
December 2024
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) approach has become a valuable analytical complement to traditional methods. HDX-MS allows the identification of dynamic surfaces in proteins. We have shown that the introduction of various mutations into the amino acid sequence of whale apomyoglobin (apoMb) leads to a change in the number of exchangeable hydrogen atoms, which is associated with a change in its compactness in the native-like condition.
View Article and Find Full Text PDFMolecules
November 2023
Institute of Protein Research RAS, 142290 Pushchino, Russia.
To date, most research on amyloid aggregation has focused on describing the structure of amyloids and the kinetics of their formation, while the conformational stability of fibrils remains insufficiently explored. The aim of this work was to investigate the effect of amino acid substitutions on the stability of apomyoglobin (ApoMb) amyloids. A study of the amyloid unfolding of ApoMb and its six mutant variants by urea has been carried out.
View Article and Find Full Text PDFJ Phys Chem B
November 2022
Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California92037, United States.
The earliest events in the folding of a protein are in general poorly understood. We used NMR relaxation dispersion experiments to study transient local collapse events in the unfolded-state (U) conformational ensemble of apomyoglobin (apoMb). Local residual secondary structure (seen in regions corresponding to the A, D, E, and H helices of the folded protein) is largely unchanged over the pH range of 2.
View Article and Find Full Text PDFFront Mol Biosci
August 2022
Institute of Protein Research, Russian Academy of Sciences, Moscow, Russia.
The design of new protein variants is usually confined to slightly "fixing" an already existing protein, adapting it to certain conditions or to a new substrate. This is relatively easy to do if the fragment of the protein to be affected, such as the active site of the protein, is known. But what if you need to "fix" the stability of a protein or the rate of its native or intermediate state formation? Having studied a large number of protein mutant forms, we have established the effect of various amino acid substitutions on the energy landscape of the protein.
View Article and Find Full Text PDFAntioxidants (Basel)
August 2022
Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden.
Phytoglobins (Pgbs) are plant-originating heme proteins of the globin superfamily with varying degrees of hexacoordination. Pgbs have a conserved cysteine residue, the role of which is poorly understood. In this paper, we investigated the functional and structural role of cysteine in BvPgb1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!