Evolution of minimal-gene-sets in host-dependent bacteria.

Trends Microbiol

Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden.

Published: January 2004

Several attempts have been made to identify the minimal set of genes that is required for life using computational approaches or studies of deletion mutants. These experiments resemble those already performed by nature; a few hundred million years ago an ancestor of Escherichia coli was domesticated by aphids, which resulted in the elimination of 70-75% of the original bacterial genome. Amazingly, the small genomes of these imprisoned bacteria are more stable than those of their free-living relatives. Minimal-gene-sets that have evolved naturally are largely species-specific, with the exception of a small set of core genes that are required for information processing. Comparative genomics of host-dependent bacteria have shown that minimal-gene-sets can persist in nature for tens of millions of years provided that the environment is rich in nutrients, that the host population size is large and that there is a strong host-level selection for bacterial gene functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2003.11.006DOI Listing

Publication Analysis

Top Keywords

host-dependent bacteria
8
genes required
8
evolution minimal-gene-sets
4
minimal-gene-sets host-dependent
4
bacteria attempts
4
attempts identify
4
identify minimal
4
minimal set
4
set genes
4
required life
4

Similar Publications

Host metabolism balances microbial regulation of bile acid signalling.

Nature

January 2025

Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.

Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development, metabolism, immune responses and cognitive function. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues.

View Article and Find Full Text PDF

Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.

View Article and Find Full Text PDF

A microaerobically induced small heat shock protein contributes to / symbiosis and interacts with a wide range of bacteroid proteins.

Appl Environ Microbiol

December 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain.

During the establishment of the symbiosis with legume plants, rhizobia are exposed to hostile physical and chemical microenvironments to which adaptations are required. Stress response proteins including small heat shock proteins (sHSPs) were previously shown to be differentially regulated in bacteroids induced by bv. viciae UPM791 in different hosts.

View Article and Find Full Text PDF

The microbiota of mosquitoes influences many aspects of their biology, including developmental processes, mating and sexual reproduction, immune functions, and refractoriness to pathogens. Here, we considered their role in resistance against insecticides. In particular, we assessed how larval infection of a permethrin-resistant and a sensitive colony of Anopheles gambiae by four strains belonging to three different Pseudomonas species affects several life history traits and the impact of the insecticide on adult mortality.

View Article and Find Full Text PDF

Lineage-dependent partitioning of activities in chemoclines defines Woesearchaeota ecotypes in an extreme aquatic ecosystem.

Microbiome

November 2024

UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France.

Article Synopsis
  • The study explores the diversity and ecological roles of Woesearchaeota in Lake Dziani Dzaha, revealing their unique genomic features and lifestyles.
  • Researchers identified two distinct populations of Woesearchaeota with a bimodal distribution in depth, linked to different chemical environments, indicating their complex interactions within the microbial community.
  • The findings challenge existing beliefs about the metabolic dependencies of Woesearchaeota, suggesting they exhibit adaptive lifestyles that contribute significantly to ecosystem dynamics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!