The phenotype of Gorlin-Goltz syndrome or basal cell nevus syndrome (BCNS, #109400, OMIM), a Mendelian trait due to PTCH mutations has been reported in a few cases of interstitial deletion of chromosome 9q. We present an 11-year-old girl with clinical features consistent with BCNS including bridging of sella turcica, biparietal bossing, downward slanting palpebral fissures, mandible prognathism, pectus excavatum, thumb abnormalities, occult spina bifida at L5-S4, numerous basal cell nevi, and single basal cell carcinoma. Cytogenetic analysis using high-resolution banding techniques and fluorescence in situ hybridization (FISH) revealed interstitial chromosome deletion 9q22.32-q33.2 involving the PTCH gene as a secondary breakage event to a chromosome translocation t(9;17)(q34.1;p11.2)mat. Further FISH studies showed the translocation breakpoint on 9q34.11 maps proximal to ABL, between the BAC clone RP11-88G17 and the LMX1B gene. The latter gene encodes a transcription factor, in which loss of function mutations are responsible for the nail-patella syndrome (NPS, #161200 OMIM). Interestingly, some features of our proband (e.g., bilateral patellar dysplasia and abnormal clavicular shape), as well as her healthy sister who carries the same translocation, are also found in patients with NPS. The chromosome 17p11.2 breakpoint maps in the Smith-Magenis syndrome common deletion region, within two overlapping BAC clones, CTD-2354J3 and RP11-311F12.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.a.20367 | DOI Listing |
Cell Biol Toxicol
January 2025
Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland.
Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.
View Article and Find Full Text PDFPlant Cell
December 2024
Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.
Background: Sarcopenia, characterized by a gradual decline in skeletal muscle mass and function with age, significantly impacts both quality of life and mortality. Autophagy plays a crucial role in maintaining muscle health. There is growing interest in leveraging autophagy to mitigate muscle ageing effects.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background/purpose: Oral lichen planus (OLP) is a chronic inflammatory disorder characterized by basement membrane disruption, which plays a crucial role in its pathogenesis. Matrix metalloproteinases (MMPs), a group of proteolytic enzymes, contribute to the degradation of the basement membrane. The specific MMPs secreted by keratinocytes in OLP lesions and relevant regulatory mechanisms are not fully understood.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany.
Purpose: For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies.
Methods: Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!