Diverse studies have shown that magnetic fields can affect behavioral and physiological functions. Previously, we have shown that sinusoidal extremely low frequency magnetic fields and specific pulsed magnetic fields (Cnps) can produce alterations in the analgesia-related behavior of the land snail. Here, we have extended these studies to show an induction of analgesia in mice equivalent to a moderate dose of morphine (5 mg/kg), and the effect of both Cnp exposure and morphine injection on some open-field activity. Cnp exposure was found to prolong the response latency to a nociceptive thermal stimulus (hot plate). Cnp+morphine offset the increased movement activity found with morphine alone. These results suggest that pulsed magnetic fields can induce analgesic behavior in mice without the side effects often associated with opiates like morphine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2003.09.063DOI Listing

Publication Analysis

Top Keywords

magnetic fields
16
specific pulsed
8
extremely low
8
low frequency
8
frequency magnetic
8
pulsed magnetic
8
cnp exposure
8
magnetic
5
morphine
5
analgesic behavioral
4

Similar Publications

In an era of interdisciplinary scientific research, new methodologies are necessary to simultaneously advance several fields of study. One such case involves the measurement of electron spin effects on biological systems. While magnetic effects are well known in biology, recent years have shown a surge in published evidence isolating the dependence on spin, rather than magnetic field, in biological contexts.

View Article and Find Full Text PDF

Noncollinear Magnetic Configurations in Frustrated Magnets.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

The exploration of materials with nanoscale noncollinear configurations has been continuously attracting attention due to the prospective applications in high-performance magnetic devices. Compared to ferromagnetic materials, noncollinear structures in frustrated magnets hold greater research value due to their smaller sizes and unique properties. However, an effective description of the nanoscale noncollinear domain structures in frustrated magnets is lacking.

View Article and Find Full Text PDF

Advances in magnetic nanoparticles for molecular medicine.

Chem Commun (Camb)

January 2025

F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.

Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine.

View Article and Find Full Text PDF

Magnetophononics and the chiral phonon misnomer.

PNAS Nexus

January 2025

The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.

The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields.

View Article and Find Full Text PDF

Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!