Heterologous overexpression and purification of four common subunits of nuclear RNA polymerases I, II and III of Schizosaccharomyces pombe.

J Chromatogr B Analyt Technol Biomed Life Sci

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, GSP-7, 117997, Moscow, Russia.

Published: February 2004

Four subunits of Schizosaccharomyces pombe RNA polymerases I-III shared by all three enzymes (Rpb5, Rpb8, Rpb10 and Rpc10 [Rpb12]) have been overexpressed in Escherichia coli expression vectors pQE or pET as hexahistidine fusions. The recombinant proteins have been purified to near homogeneity using metal-chelate affinity chromatography and gel filtration. Homogeneity and identity of the purified protein preparations was demonstrated by denaturing polyacrylamide gel electrophoresis and TOF-MALDI mass spectrometry. The proteins were obtained in large amounts, and their preparations are currently in use for monoclonal antibody production and physico-chemical studies of these individual components of eukaryotic transcription enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2003.09.008DOI Listing

Publication Analysis

Top Keywords

rna polymerases
8
schizosaccharomyces pombe
8
heterologous overexpression
4
overexpression purification
4
purification common
4
common subunits
4
subunits nuclear
4
nuclear rna
4
polymerases iii
4
iii schizosaccharomyces
4

Similar Publications

DNA-joining by ligase and polymerase enzymes has provided the foundational tools for generating recombinant DNA and enabled the assembly of gene and genome-sized synthetic products. Xenobiotic nucleic acid (XNA) analogues of DNA and RNA with alternatives to the canonical bases, so-called 'unnatural' nucleobase pairs (UBP-XNAs), represent the next frontier of nucleic acid technologies, with applications as novel therapeutics and in engineering semi-synthetic biological organisms. To realise the full potential of UBP-XNAs, researchers require a suite of compatible enzymes for processing nucleic acids on a par with those already available for manipulating canonical DNA.

View Article and Find Full Text PDF

Rifampicin-resistant tuberculosis (RR-TB) is a critical issue with significant implications for patient care, public health, and TB control efforts that necessitate comprehensive strategies for detection. This study presents a novel point-of-care diagnostic tool for RR-TB detection employing a peptide nucleic acid (PNA)-paper-based sensor combined with isothermal recombinase polymerase amplification (RPA). The sensor targets mutations in codons 516, 526, and 531 of the rpoB gene, the top three common mutations associated with rifampicin-resistant strains.

View Article and Find Full Text PDF

NKAPL facilitates transcription pause-release and bridges elongation to initiation during meiosis exit.

Nat Commun

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.

Transcription elongation, especially RNA polymerase II (Pol II) pause-release, is less studied than transcription initiation in regulating gene expression during meiosis. It is also unclear how transcription elongation interplays with transcription initiation. Here, we show that depletion of NKAPL, a testis-specific protein distantly related to RNA splicing factors, causes male infertility in mice by blocking the meiotic exit and downregulating haploid genes.

View Article and Find Full Text PDF

LEDGF/p75 promotes transcriptional pausing through preventing SPT5 phosphorylation.

Sci Adv

January 2025

Department of Hematology, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China.

SPT5 exhibits versatile functions in RNA Pol II promoter proximal pausing, pause release, and elongation in metazoans. However, the mechanism underlying the functional switch of SPT5 during early elongation has not been fully understood. Here, we report that the phosphorylation site-rich domain (PRD)/CTR1 and the prion-like domain (PLD)/CTR2, which are situated adjacent to each other within the C-terminal repeat (CTR) in SPT5, play pivotal roles in Pol II pausing and elongation, respectively.

View Article and Find Full Text PDF

T cell activation is accompanied by extensive changes in epigenome. However, the high-ordered chromatin organization underpinning CD8 T cell activation is not fully known. Here, we show extensive changes in the three-dimensional genome during CD8 T cell activation, associated with changes in gene transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!