Distortion product otoacoustic emissions (DPOAE), permanent threshold shifts (PTS) and outer hair cell (OHC) losses were analyzed in a population of 187 noise-exposed chinchillas to determine the predictive accuracy (sensitivity and specificity) of the DPOAE for PTS and OHC loss. Auditory evoked potentials (AEP) recorded from the inferior colliculus of the brainstem were used to estimate hearing thresholds and surface preparation histology was used to determine sensory cell loss. The overlapping cumulative distributions and high variability in emission responses for both PTS and OHC loss made it difficult to predict AEP threshold and OHC loss from DPOAE level measurements alone. Using a strict criterion (i.e. emissions better than the 5th percentile of the preexposure DPOAE level, and PTS< or = 5 dB or OHC loss< or = 5%), it was found that the postexposure DPOAE level could be used with reasonable confidence to determine if the status of peripheral auditory system was either normal (i.e. PTS< or = 5 dB) or abnormal (PTS>30 dB or OHC loss>40%). However, the high variability of individual DPOAE responses resulted in a broad region of 'uncertainty' (i.e. 5 or = 50%) or PTS (> or = 35 dB) in noise-exposed chinchillas. Based on an exponential regression analysis of individual subjects, correlations were higher for PTS/DPOAE than for OHC loss/DPOAE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-5955(03)00339-3DOI Listing

Publication Analysis

Top Keywords

ohc loss
12
dpoae level
12
distortion product
8
product otoacoustic
8
otoacoustic emissions
8
sensory cell
8
cell loss
8
noise-exposed chinchillas
8
pts ohc
8
high variability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!