Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nut.2003.10.002 | DOI Listing |
Sci Rep
December 2024
Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.
In order to plan and facilitate the culture of personalized / precision medicine in medical practices within any healthcare institution, it is requisite for healthcare professionals like clinicians to have a clear understanding and approach towards the practices of personalized genetic testing. This nationwide cross-sectional study aimed to measure the perceptions and knowledge of clinicians towards personalized genetic testing and assess their current practices of personalized genetic testing in clinical settings through an online self-administered questionnaire in Saudi Arabia. The results of the study revealed that almost two-fifths of participants were responsible for ordering genetic tests directly (39.
View Article and Find Full Text PDFTheranostic drugs represent an emerging path to deliver on the promise of precision medicine. However, bottlenecks remain in characterizing theranostic targets, identifying theranostic lead compounds, and tailoring theranostic drugs. To overcome these bottlenecks, we present the Theranostic Genome, the part of the human genome whose expression can be utilized to combine therapeutic and diagnostic applications.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China.
Deciphering how noncoding DNA determines gene expression is critical for decoding the functional genome. Understanding the transcription effects of noncoding genetic variants are still major unsolved problems, which is critical for downstream applications in human genetics and precision medicine. Here, we integrate regulatory-specific neural networks and tissue-specific gradient-boosting trees to build SVEN: a hybrid sequence-oriented architecture that can accurately predict tissue-specific gene expression level and quantify the tissue-specific transcriptomic impacts of structural variants across more than 350 tissues and cell lines.
View Article and Find Full Text PDFNat Commun
December 2024
GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China.
Cell type deconvolution methods can impute cell proportions from bulk transcriptomics data, revealing changes in disease progression or organ development. But benchmarking studies often use simulated bulk data from the same source as the reference, which limits its application scenarios. This study examines batch effects in deconvolution and introduces SCCAF-D, a computational workflow that ensures a Pearson Correlation Coefficient above 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!