The benzo[b]acronycine derivative S23906-1 has been recently identified as a promising antitumor agent, showing remarkable in vivo activities against a panel of solid tumors. The anticancer activity is attributed to the capacity of the drug to alkylate DNA, selectively at the exocyclic 2-amino group of guanine residues. Hydrolysis of the C-1 and C-2 acetate groups of S23906-1 provides the diol compound S28907-1 which is inactive whereas the intermediate C-2 monoacetate derivative S28687-1 is both highly reactive toward DNA and cytotoxic. The reactivity of this later compound S28687-1 toward two bionucleophiles, DNA and the tripeptide glutathion, has been investigated by mass spectrometry to identify the nature of the (type II) covalent adducts characterized by the loss of the acetate group at position 2. On the basis of NMR and molecular modeling analyses, the reaction mechanism is explained by a transesterification process where the acetate leaving group is transferred from position C-2 to C-1. Altogether, the study validates the reaction scheme of benzo[b]acronycine derivative with its target.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2003.10.056DOI Listing

Publication Analysis

Top Keywords

benzo[b]acronycine derivative
8
transesterification reaction
4
reaction implicated
4
implicated covalent
4
covalent binding
4
binding benzo[b]acronycine
4
benzo[b]acronycine anticancer
4
anticancer agents
4
dna
4
agents dna
4

Similar Publications

Synthesis, antitumor activity, and mechanism of action of benzo[b]chromeno[6,5-g][1,8]naphthyridin-7-one analogs of acronycine.

J Med Chem

December 2014

Laboratoire de Pharmacognosie, Université Paris Descartes, U.M.R./C.N.R.S. n° 8638, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l'Observatoire, 75006 Paris, France.

A series of 6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]chromeno[6,5-g][1,8]naphthyridin-7-one (4), 13-aza derivatives of benzo[b]acronycine, the isomeric 5-methoxy-2,2,13-trimethyl-2,13-dihydro-6H-benzo[b]chromeno[7,6-g][1,8]naphthyridin-6-one (5), and related cis-diols mono- and diesters were designed and synthesized. Their in vitro and in vivo biological activities were evaluated. As previously observed in the acronycine series, esters were the most potent derivatives exhibiting submicromolar activities; among them monoesters are particularly active.

View Article and Find Full Text PDF

In a view to develop new DNA alkylating antitumour drugs, evaluating the precise mechanism of action and the molecular/cellular consequences of the alkylation is a point of major interest. The benzo-b-acronycine derivative S23906-1 alkylates guanine nucleobases in the minor groove of the DNA helix and presents an original ability to locally open the double helix of DNA, which appears to be associated with its cytotoxic activity. However, the molecular mechanism linking adduct formation to cellular consequences is not precisely known.

View Article and Find Full Text PDF

Synthesis and cytotoxic activity of benzo[a]acronycine and benzo[b]acronycine substituted on the A ring.

Eur J Med Chem

May 2011

Laboratoire de Pharmacognosie, Université Paris Descartes, UMR/CNRS 8638, Faculté des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75006 Paris, France.

The impact of substitutions at position 10 in the A ring of the cytotoxic benzo[a]acronycine and benzo[b]acronycine series has been explored. 10-Bromobenzo[a] and 10-bromobenzo[b]acronycine were prepared in 12% and 15% yield respectively from commercially available chemicals. Their 1,2-dihydro-1,2-dihydroxy diesters were synthesized.

View Article and Find Full Text PDF

In order to explore the structure-activity relationships in the acronycine and psorospermin series, simplified analogues of the highly cytotoxic (+/-)-(2R*,1'R*)-5-methoxy-11-methyl-2-(2-methyloxiran-2-yl)-1,2-dihydro-11H-furo[2,3-c]acridin-6-one and (+/-)-(2R*,1'R*)-5-methoxy-13-methyl-2-(2-methyloxiran-2-yl)-1,2-dihydro-13H-benzo[b]furo[3,2-h]-acridin-6-one lacking the fused furan ring, including 3-allyloxy-1-methoxy-10-methyl-acridin-9(10H)-one, 3-allyloxy-1-methoxy-5-methyl-benzo[b]acridin-12(5H)-one, the corresponding epoxides, and related dihydrodiol esters and diesters were prepared. Only the simplified oxirane compounds displayed significant antiproliferative activity compared to the parent compounds. The oxirane alkylating unit appears indispensible to observe significant antiproliferative activity in both series, but the presence of the angularly fused furan ring does not appear as a crucial structural requirement to observe significant cytotoxic activity.

View Article and Find Full Text PDF

S23906-1 is a benzo[b]acronycine derivative acting as a DNA-alkylating agent through covalent bonding to the exocyclic amino group of guanines and subsequent local opening of the DNA helix. This compound was selected for phase I clinical trials based on its efficient antitumor activity in experimental models and its unique mode of action. S23906-1 is the racemate of cis-1,2-diacetoxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!