Discovery of novel modulators of metabotropic glutamate receptor subtype-5.

Bioorg Med Chem

Department of Chemistry, Merck Research Laboratories, MRLSDB2, 3535 General Atomics Court, 92121, San Diego, CA 92121, USA.

Published: January 2004

A series of potent and selective mGluR5 antagonists were synthesized and evaluated in vitro and in vivo. It was found that a pyridyl functionality is a potential replacement for acetonitrile in the lead structure, with 2-pyridyl being most favored. Additionally, the benzoxazole moiety could also be replaced by other heterobicyclic rings such as imidazothiazole.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2003.10.021DOI Listing

Publication Analysis

Top Keywords

discovery novel
4
novel modulators
4
modulators metabotropic
4
metabotropic glutamate
4
glutamate receptor
4
receptor subtype-5
4
subtype-5 series
4
series potent
4
potent selective
4
selective mglur5
4

Similar Publications

Discovery of a 2'-α-Fluoro-2'-β--(fluoromethyl) Purine Nucleotide Prodrug as a Potential Oral Anti-SARS-CoV-2 Agent.

J Med Chem

January 2025

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

A novel 2'-α-fluoro-2'-β--(fluoromethyl) purine nucleoside phosphoramidate prodrug has been designed and synthesized to treat SARS-CoV-2 infection. The SARS-CoV-2 central replication transcription complex (C-RTC, nsp12-nsp7-nsp8) catalyzed in vitro RNA synthesis was effectively inhibited by the corresponding bioactive nucleoside triphosphate (). The cryo-electron microscopy structure of the C-RTC: complex was also determined.

View Article and Find Full Text PDF

Exploring Tetraselmis chui microbiomes-functional metagenomics for novel catalases and superoxide dismutases.

Appl Microbiol Biotechnol

January 2025

Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.

The focus on microalgae for applications in several fields, e.g. resources for biofuel, the food industry, cosmetics, nutraceuticals, biotechnology, and healthcare, has gained increasing attention over the last decades.

View Article and Find Full Text PDF

Autophagy-targeted Pt(IV) agents: a new horizon in antitumor drug development.

Dalton Trans

January 2025

Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.

Pt(IV) complexes as prodrugs of Pt(II) drugs exhibit numerous advantages such as enhanced stability, reduced toxicity, increased oral bioavailability, and efficacy in overcoming the drug resistance of Pt(II) compounds, which underscore their significant potential in the advancement of novel Pt anticancer agents. Furthermore, protective autophagy is pivotal in sustaining tumor cell homeostasis and modulating the tumor microenvironment (TME), thereby representing a critical target for the development of antitumor drugs. Specific inhibition or activation of autophagy during chemotherapy would break the internal homeostasis in the TME and increase antitumor activities.

View Article and Find Full Text PDF

Identification of a Chemical Probe for BLT2 Activation by Scaffold Hopping.

J Med Chem

January 2025

Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.

The leukotriene B4 receptor 2 (BLT2) is a G-protein coupled receptor, which is endogenously activated by 12()-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT). BLT2 is gaining attention as a potential therapeutic target involved in various pathologies including diabetic wound healing, ophthalmic diseases, and colitis. However, validation of BLT2 as drug target requires chemical probes and pharmacological tools which will allow for application in vivo.

View Article and Find Full Text PDF

Discovery and Total Synthesis of a New Class of Minor Immunosuppressive Plant Sesterterpenoids.

Angew Chem Int Ed Engl

January 2025

Kunming Institute of Botany Chinese Academy of Sciences, State Key Laboratory of Phytochemistry and Plant Resources in West China, Lanhei Road 132, Heilongtan, 650201, Kunming, CHINA.

Plant sesterterpenoids are an extremely rare family of natural products that generally possess novel chemical structures and diverse biological activities. Here, we report the discovery of an unprecedented group of minor plant sesterterpenoids, gracilisoids B-E (2-5), which feature two types of highly functionalized bicyclo[3.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!