Nearly 30% of the breast cancer patients in the Taiwanese community have their diseases diagnosed before the age of 40. Their 5-year survival rate is poorer than that of their late-onset breast cancer counterparts. Genomic abnormalities between these two breast cancer age groups were compared using comparative genomic hybridization (CGH) analyses. The sample set was made up of 44 early-onset (<35 years old) and 54 late-onset cases (>63 years old). Frequent CGH changes were noted, such as gains on 8q, 1q, and 17q and losses on 16q, 17p, and 8p. These were very similar for the two age groups, as well as for Taiwanese women and other ethnic populations. In contrast, several less common lesions, such as gains on 16p and 8p and losses on 11q and 9p, were significantly different between the early- and late-onset breast tumors. In addition, more profound chromosomal changes were consistently associated with the more advanced-stage tumors, and less expression of the estrogen and the progesterone receptors, and of HER-2/neu. About 19% of the breast cancers examined carried a TP53 mutation in exons 4-9. Of these, 88% (15/17) were missense point mutations and these were distributed randomly along the tested gene fragments without apparent clustering, as has been shown in certain other ethnic or regional studies. On average, patients carrying these TP53 mutations had 9.5 CGH lesions per case, compared to only 2.8 changes in samples that had no TP53 mutation. Our results indicate that certain genomic lesions, especially 11q loss, may play a role in early-onset breast tumor formation, and that combined use of genomic patterns and molecular targets may provide a useful tool for diagnostic, therapeutic, and prognostic purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0165-4608(03)00205-x | DOI Listing |
Front Med (Lausanne)
January 2025
Department of General Surgery, The People's Hospital of Fenghua Ningbo, Ningbo, China.
Background: Breast cancer (BC) is the most common cancer in women in the U.S. and a leading cause of cancer-related deaths.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Introduction: Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential.
View Article and Find Full Text PDFBreast J
January 2025
Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.
Collagen type XI alpha 1 (COL11A1), a critical member of the collagen superfamily, is essential for tissue structure and integrity. This study aimed to validate previously identified variations in COL11A1 expression during breast cancer carcinogenesis and progression, as well as elucidate their clinical implications. COL11A1 mRNA expression levels were assessed using real-time reverse transcription-PCR (RT-PCR) in 30 pairs of normal breast tissue and primary breast cancer, 30 pairs of primary breast cancer and lymph node metastases, 30 benign tumors, and 107 primary breast cancers.
View Article and Find Full Text PDFOpen Life Sci
December 2024
Department of Pathology, Hangzhou Women's Hospital, 369 Kunpeng Road, Shangcheng District, Hangzhou, 310008, Zhejiang, China.
Breast cancer is a common malignant tumor of women. Ki67 is an important biomarker of cell proliferation. With the quantitative analysis, it is an important indicator of malignancy for breast cancer diagnosis.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China.
Increasing evidence has shown that physical exercise remarkably inhibits oncogenesis and progression of numerous cancers and exercise-responsive microRNAs (miRNAs) exert a marked role in exercise-mediated tumor suppression. In this research, expression and prognostic values of exercise-responsive miRNAs were examined in breast cancer (BRCA) and further pan-cancer types. In addition, multiple independent public and in-house cohorts, in vitro assays involving multiple, macrophages, fibroblasts, and tumor cells, and in vivo models were utilized to uncover the tumor-suppressive roles of miR-29a-3p in cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!