Purpose: Boron neutron capture therapy (BNCT) has been used clinically as a single modality treatment for high-grade gliomas and melanomas metastatic to the brain. The purpose of the present study was to determine whether its efficacy could be enhanced by an X-ray boost administered after BNCT. Two brain tumor models were used, the F98 glioma as a model for primary brain tumors and the MRA 27 human melanoma as a model for metastatic brain tumors.

Methods And Materials: For biodistribution studies, either 10(5) F98 glioma cells were implanted stereotactically into the brains of syngeneic Fischer rats or 10(6) MRA 27 melanoma cells were implanted intracerebrally into National Institutes of Health (NIH)-rnu nude rats. Biodistribution studies were performed 11-13 days after implantation of the F98 glioma and 20-24 days after implantation of the MRA 27 melanoma. Animals bearing the F98 glioma received a combination of two boron-containing drugs, sodium borocaptate at a dose of 30 mg/kg and boron phenylalanine (BPA) at a dose of 250 mg/kg. MRA 27 melanoma-bearing rats received BPA (500 mg/kg) containing an equivalent amount of 10B (27 mg B/kg). The drugs were administered by either intracarotid or i.v. injection.

Results: The tumor boron concentration after intracarotid injection was approximately 50% greater in the F98 glioma and MRA 27 melanoma after intracarotid injection (20.8 and 36.8 microg/g, respectively) compared with i.v. injection (11.2 and 19.5 microg/g, respectively). BNCT was carried out at the Brookhaven National Laboratory Medical Research Reactor approximately 14 days after tumor implantation of either the F98 glioma or the MRA 27 melanoma. Approximately 7-10 days after BNCT, subsets of animals were irradiated with 6-MV photons, produced by a linear accelerator at a total dose of 15 Gy, delivered in 5-Gy daily fractions. F98 glioma-bearing rats that received intracarotid or i.v. sodium borocaptate plus BPA, followed 2.5 h later by BNCT and 7-10 days later by X-rays, had similar mean survival times (61 days and 53 days, respectively, p = 0.25), and the non X-irradiated, BNCT-treated animals had a mean survival time of 52 and 40 days, respectively, for intracarotid vs. i.v. injection; the latter was equivalent to that of the irradiated animals. The corresponding survival time for MRA 27 melanoma-bearing rats that received intracarotid or i.v. BPA, followed by BNCT and then X-irradiation, was 75 and 82 days, respectively (p = 0.5), 54 days without X-irradiation (p = 0.0002), 37 days for X-irradiation alone, and 24 days for untreated controls. In contrast to the data obtained with the F98 glioma, MRA 27 melanoma-bearing rats that received i.v. BPA, followed by BNCT, had a highly significant difference in mean survival time compared with the irradiated controls (54 vs. 37 days, p = 0.008).

Conclusion: Our data are the first to suggest that a significant therapeutic gain may be obtained when BNCT is combined with an X-ray boost. Additional experimental studies are required to determine the optimal combination of X-radiation and neutron doses and whether it is more advantageous to administer the photon boost before or after BNCT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0360-3016(03)01613-4DOI Listing

Publication Analysis

Top Keywords

f98 glioma
28
mra melanoma
16
rats received
16
days
13
mra melanoma-bearing
12
melanoma-bearing rats
12
intracarotid injection
12
glioma mra
12
bpa bnct
12
survival time
12

Similar Publications

CXCL12 impact on glioblastoma cells behaviors under dynamic culture conditions: Insights for developing new therapeutic approaches.

PLoS One

December 2024

Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, 3D Dynamic Cell Culture Systems Laboratory, Université de Sherbrooke, Sherbrooke, QC, Canada.

Glioblastoma multiforme (GBM) is the most prevalent malignant brain tumor, with an average survival time of 14 to 20 months. Its capacity to invade brain parenchyma leads to the failure of conventional treatments and subsequent tumor recurrence. Recent studies have explored new therapeutic strategies using a chemoattracting gradient to attract GBM cells into a soft hydrogel trap where they can be exposed to higher doses of radiation or chemotherapy.

View Article and Find Full Text PDF

Background/objectives: Although the use of radiation-sensitizing agents has been shown to enhance the effect of radiation on tumor cells, the blood-brain barrier (BBB) impedes these agents from reaching brain tumor sites when provided systemically. Localized methods of sensitizer delivery, utilizing hydrogels, have the potential to bypass the blood-brain barrier. This study examined the ability of photochemical internalization (PCI) of hydrogel-released bleomycin to enhance the growth-inhibiting effects of radiation on multi-cell glioma spheroids in vitro.

View Article and Find Full Text PDF

Introduction: High grade gliomas are characterized by a very poor prognosis due to fatal relapses after surgery. Current chemotherapy is only a palliative care, while potential drug candidates are limited by poor overcoming of the blood-brain barrier.

Aims: A suitable chemotherapeutic approach should be engineered to overcome both the altered blood-brain barrier in the glioma site, as well as the intact one in the brain adjacent to tumor zone, and to target the multiple factors influencing glioma proliferation, differentiation, migration, and angiogenesis.

View Article and Find Full Text PDF

High-frequency irreversible electroporation (H-FIRE), a nonthermal brain tumor ablation therapeutic, generates a central tumor ablation zone while transiently disrupting the peritumoral blood-brain barrier (BBB). We hypothesized that bystander effects of H-FIRE tumor cell ablation, mediated by small tumor-derived extracellular vesicles (sTDEV), disrupt the BBB endothelium. Monolayers of bEnd.

View Article and Find Full Text PDF

As effective treatment of glioblastoma is still an unmet need, targeted delivery systems for efficient treatment are of utmost interest. Therefore, in this paper, surface modifications with a small peptide c(RGD) or physiological protein (ApoE3) were investigated. Cellular uptake in murine endothelial cells (bEnd.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!