The effects of jarastatin (JT), a monomeric RGD-disintegrin, were compared with those of the heterodimeric MLD-disintegrin, EC3, on human neutrophil activation and functions. Both disintegrins inhibited neutrophil chemotaxis induced by fMet-Leu-Phe and were also potent chemotactic agents. These effects were accompanied by an increase in actin polymerization, and both were inhibited by genistein, a tyrosine kinase inhibitor. While JT, but not other RGD-disintegrins, inhibited EC3-induced chemotaxis, EC3 was not able to inhibit JT effect. The chemotactic effect of JT was blocked by anti-alpha(M) antibody whereas anti-alpha(9)beta(1) inhibited EC3 effect. Both JT and EC3 induced focal adhesion kinase (FAK) and phosphoinositide 3-kinase (PI3K) activation. Accordingly, LY294002, a PI3K inhibitor, impaired their chemotactic effect on neutrophils. JT induced Erk-2 translocation to nucleus and a delay of the spontaneous apoptosis of neutrophils in vitro. In contrast, EC3 inhibited Erk-2 activation and had a proapoptotic effect. These effects were reverted by PD98059, an MEK 1/2 inhibitor and blocked by z-VAD-FMK, a caspase inhibitor. In addition, JT, but not EC3, increased the IL-8 mRNA levels in neutrophils. The data indicate that JT and EC3 directly activate an integrin-coupled signaling and modulate the MAPK pathway in different ways, leading the neutrophils to express different functional response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2003.09.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!