Primary structure of stanniocalcin in two basal Actinopterygii.

Gen Comp Endocrinol

Department of Zoology, University of Toronto at Scarborough, Toronto, ON, Canada M1C 1A4.

Published: January 2004

The primary structure of stanniocalcin (STC), the principal product of the corpuscles of Stannius (CS) in ray-finned fishes, was deduced from STC cDNA clones for two species of holostean, the gar, Lepisosteus osseus and the bowfin, Amia calva. Overlapping partial cDNA clones were amplified by polymerase chain reaction (PCR) from single-strand cDNA of the CS. Excluding the poly(A) tail, the cDNAs of 1863 base pairs [bp] (gar) and 914 bp (bowfin) contained the 5' untranslated region followed by the coding region and the 3' untranslated region. Both the gar and bowfin STC cDNA encode a prehormone of 252 amino acids (aa) with a signal peptide of 32 aa and a mature protein of 220 aa. The deduced aa sequence of gar STC shows 87% identity with bowfin STC, 60-72% identity with most vertebrate STCs and 26% identity with mouse STC2. Phylogenetic analysis of the sequences support a view that the gar and bowfin form a monophyletic holostean clade. RT-PCR revealed in the gar and bowfin that, just as in mammals and rainbow trout, the expression of STC mRNA is widely spread in many tissues and organs. Since the gar and bowfin are representatives of the most ancient fishes known to possess CS, the corpuscular-derived STC molecule in fish has had a conserved evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2003.09.019DOI Listing

Publication Analysis

Top Keywords

gar bowfin
16
primary structure
8
structure stanniocalcin
8
stc cdna
8
cdna clones
8
untranslated region
8
bowfin stc
8
stc
7
gar
7
bowfin
7

Similar Publications

A chromosome-level genome assembly of longnose gar, Lepisosteus osseus.

G3 (Bethesda)

July 2023

Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC 28223, USA.

Holosteans (gars and bowfins) represent the sister lineage to teleost fishes, the latter being a clade that comprises over half of all living vertebrates and includes important models for comparative genomics and human health. A major distinction between the evolutionary history of teleosts and holosteans is that all teleosts experienced a genome duplication event in their early evolutionary history. As the teleost genome duplication occurred after teleosts diverged from holosteans, holosteans have been heralded as a means to bridge teleost models to other vertebrate genomes.

View Article and Find Full Text PDF

For over half a century, deciphering the origins of the genomic loci that form the jawed vertebrate adaptive immune response has been a major topic in comparative immunogenetics. Vertebrate adaptive immunity relies on an extensive and highly diverse repertoire of tandem arrays of variable (V), diversity (D), and joining (J) gene segments that recombine to produce different immunoglobulin (Ig) and T cell receptor (TCR) genes. The current consensus is that a recombination-activating gene (RAG)-like transposon invaded an exon of an ancient innate immune VJ-bearing receptor, giving rise to the extant diversity of Ig and TCR loci across jawed vertebrates.

View Article and Find Full Text PDF

Over 99% of ray-finned fishes (Actinopterygii) are teleosts, a clade that comprises half of all living vertebrate species that have diversified across virtually all fresh and saltwater ecosystems. This ecological breadth raises the question of how the immunogenetic diversity required to persist under heterogeneous pathogen pressures evolved. The teleost genome duplication (TGD) has been hypothesized as the evolutionary event that provided the substrate for rapid genomic evolution and innovation.

View Article and Find Full Text PDF

Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes.

Cell

March 2021

BGI-Shenzhen, Shenzhen 518083, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Rich fossil evidence suggests that many traits and functions related to terrestrial evolution were present long before the ancestor of lobe- and ray-finned fishes. Here, we present genome sequences of the bichir, paddlefish, bowfin, and alligator gar, covering all major early divergent lineages of ray-finned fishes. Our analyses show that these species exhibit many mosaic genomic features of lobe- and ray-finned fishes.

View Article and Find Full Text PDF

Sex hormone-binding globulin (Shbg) is an important vertebrate blood carrier protein synthetized in the liver and involved in the transport and local regulation of sex steroids in target tissues. A novel shbg gene (shbgb) with a predominant ovarian expression was recently characterized. Being initially found only in salmonids, this shbgb was originally thought to result from the Salmonid-specific whole genome duplication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!