Embryonic stem (ES) cells, derived from the inner cell mass of blastocyst can differentiate into multiple cell lineages. In this study, we examined the possible involvement of Ras in ES cell differentiation. We found that Ras was activated upon formation of embryoid bodies (EBs), an initial step in ES cell differentiation. When expressed during EB differentiation, a dominant-negative mutant of Ras suppressed induction of marker genes for extraembryonic endoderm differentiation, including GATA-4, GATA-6, alpha-fetoprotein, and hepatocyte nuclear factor 3beta, while an activated mutant promoted their induction. Expression of a Ras mutant that selectively activates the Raf/MEK/Erk pathway also enhanced induction of extraembryonic endoderm markers, and treatment with a MEK inhibitor resulted in their decreased expression. In addition, Ras stimulated downregulation of Nanog, a suppressor of endoderm differentiation in ES cells. These data suggest that Ras activation during EB differentiation plays a crucial role in initiation of extraembryonic endoderm differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2003.11.138 | DOI Listing |
Dev Biol
January 2025
Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, London, UK. Electronic address:
Reichert's membrane (RM) is a basement membrane of gigantic proportions that surrounds the mammalian embryo following implantation. It is part of the parietal yolk sac, which originates from the wall of the preimplantation blastocyst. RM persists from implantation to birth in rodents and analogous structures occur in other mammals, including primates.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
https://ror.org/05f950310 Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
Understanding the mechanisms of hypoblast development and its role in the implantation is critical for improving farm animal reproduction, but it is hampered by the lack of research models. Here we report that a chemical cocktail (FGF4, BMP4, IL-6, XAV939, and A83-01) enables de novo derivation and long-term culture of bovine extraembryonic endoderm cells (bXENs). Transcriptomic and epigenomic analyses confirmed the identity of bXENs and revealed that they are resemble hypoblast lineages of early bovine peri-implantation embryos.
View Article and Find Full Text PDFDev Cell
December 2024
Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA. Electronic address:
Two distinct lineages, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common inner cell mass (ICM) progenitors in mammalian embryos. To study how these sister identities are forged, we leveraged mouse embryonic stem (ES) cells and extra-embryonic endoderm (XEN) stem cells-in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses showed distinct rates, efficiencies, and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions.
View Article and Find Full Text PDFCell Death Differ
December 2024
Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
The ER-resident proteins VMP1 and TMEM41B share a conserved DedA domain, which confers lipid scramblase activity. Loss of either gene results in embryonic lethality in mice and defects in autophagy and lipid droplet metabolism. To investigate their role in pluripotency and lineage specification, we generated Vmp1 and Tmem41b mutations in mouse embryonic stem cells (ESCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!