Real-time nucleic acid sequence-based amplification (NASBA) is an isothermal method specifically designed for amplification of RNA. Fluorescent molecular beacon probes enable real-time monitoring of the amplification process. Successful identification, utilizing the real-time NASBA technology, was performed on a microchip with oligonucleotides at a concentration of 1.0 and 0.1 microM, in 10- and 50-nL reaction chambers, respectively. The microchip was developed in a silicon-glass structure. An instrument providing thermal control and an optical detection system was built for amplification readout. Experimental results demonstrate distinct amplification processes. Miniaturized real-time NASBA in microchips makes high-throughput diagnostics of bacteria, viruses, and cancer markers possible, at reduced cost and without contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac034779hDOI Listing

Publication Analysis

Top Keywords

real-time nucleic
8
nucleic acid
8
acid sequence-based
8
sequence-based amplification
8
real-time nasba
8
amplification
6
real-time
5
amplification nanoliter
4
nanoliter volumes
4
volumes real-time
4

Similar Publications

Dental pulp regeneration is significantly aided by human dental pulp stem cells (hDPSCs). An increasing number of studies have demonstrated that circular RNAs (circRNAs) are crucial in the multidirectional differentiation of many mesenchymal stem cells, but their specific functions and mechanisms remain unknown. This work aimed at elucidating the molecular mechanism by which hsa_circ_0001599 works in hDPSCs during odontogenic differentiation.

View Article and Find Full Text PDF

Rapid visual detection of hepatitis E virus combining reverse transcription recombinase-aided amplification with lateral flow dipstick and real-time fluorescence.

J Clin Microbiol

January 2025

Laboratory of Animal Pathology and Public Health, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.

Unlabelled: Hepatitis E virus (HEV) is a globally prevalent zoonotic pathogen that is primarily spread through the fecal-oral route, such as by consuming undercooked or contaminated pork. HEV infection leads to an estimated 3.3 million symptomatic cases of viral hepatitis and 70,000 deaths in human populations each year.

View Article and Find Full Text PDF

Introduction: Schistosomiasis (Bilharzia), a neglected tropical disease caused by parasites, afflicts over 240 million people globally, disproportionately impacting Sub-Saharan Africa. Current diagnostic tests, despite their utility, suffer from limitations like low sensitivity. Polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR) remain the most common and sensitive nucleic acid amplification tests.

View Article and Find Full Text PDF

may inhibit esophageal squamous cell carcinoma growth and metastasis by regulating the axis.

Transl Cancer Res

December 2024

Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Background: FOXF2, a member of the transcription factor FOX family proteins, plays a key role in tumorigenesis and tumor aggressiveness. However, the potential molecular mechanism of FOXF2 in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Exploring its role and mechanism in ESCC progression may help identify new diagnostic markers and therapeutic targets.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is a common contributor for low back pain, which is featured by loss of extracellular matrix and nucleus pulposus cells (NPCs). Hence, our current study is undertaken to explore the potential mechanism of NPC apoptosis during IVDD. Transcription factor Dp-1 (TFDP1) expression in degenerative and non-degenerative intervertebral disc tissues was analyzed by bioinformatics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!