Background: The spinal H-reflex has been shown to correlate with surgical immobility, i.e., the absence of motor responses to noxious stimulation, during isoflurane anesthesia. Here, the authors established individual concentration-response functions for H-reflex amplitude and tested the predictive power of the H-reflex for movement responses during sevoflurane anesthesia in comparison to electroencephalographic parameters. In addition, they investigated the effect of noxious stimulation on the H-reflex itself.
Methods: The authors studied 12 female patients during sevoflurane anesthesia before surgery. The sevoflurane concentration was increased, a laryngeal mask was inserted, and then the sevoflurane concentration was decreased until H-reflex amplitude (recorded over the soleus muscle) recovered. Thereafter, the end-tidal sevoflurane concentration was kept at a constant value close to the minimum alveolar concentration for suppression of movement responses after tetanic stimulation (MACtetanus), determined by the Dixon up-down method. Pharmacodynamic modeling of H-reflex amplitude and of the Bispectral Index was performed, and predictive values for motor responses to noxious electrical stimulation (50 Hz, 60 mA tetanus, volar forearm) were compared using the prediction probability.
Results: Concentration-dependent depression of H-reflex amplitude by sevoflurane was well modeled (median r2 = 0.97) by a sigmoid function with a median EC50 of 1.5 vol% and a median slope parameter of 3.7, much steeper than the slope for the Bispectral Index. MACtetanus calculated by logistic regression was 1.6 vol%. H-reflex amplitude predicted motor responses to noxious stimulation with a prediction probability of 0.76, whereas the prediction probability for Bispectral Index and spectral edge frequency (SEF95) were not different from chance alone. Noxious stimulation was followed by a substantial increase of H-reflex amplitude for several minutes, whereas the Bispectral Index and SEF95 exhibited no significant changes.
Conclusions: Suppression of movement to noxious stimulation and suppression of H-reflex amplitude by sevoflurane follow similar concentration-response functions. Although this does not imply a causal relation, it explains the high predictive value of H-reflex amplitude for motor responses to noxious stimuli, even in a narrow concentration range around the MACtetanus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000542-200401000-00011 | DOI Listing |
Sci Rep
December 2024
BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.
J Appl Physiol (1985)
February 2025
Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Dafundo, Portugal.
The interaction between muscle strength and endurance impacts athletic performance. Integrating both modalities into concurrent exercise (CE) is challenging due to the interference effect. This study explored the acute effects of resistance-only (R), endurance-only (E), and CE sessions on voluntary muscle strength, evoked neurophysiological parameters, and contractile properties of the plantar flexors.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States.
Deep dry needling (DDN) is a method to treat muscle trigger points (TrPs) often found in persons with neuromuscular pain and spasticity. Currently, its neurophysiological actions are not well established. Thus, to understand how DDN affects spinal cord physiology, we investigated the effects of TrP DDN on spinal reflexes.
View Article and Find Full Text PDFFront Neurol
November 2024
Rehabilitation Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China.
Background: Extracorporeal shock wave therapy (ESWT), as a non-invasive physical agent modality, was effective in relieving spasticity, reducing pain, and improving dysfunction. This systematic review and meta-analysis aimed to investigate the effect of ESWT on nerve conduction, and to find out whether the ESWT group is superior to the control or other comparison groups, thus providing support for guiding the rehabilitation of peripheral nerve injury in clinical work.
Methods: PubMed, Web of Science, the Cochrane Library, and Embase were searched from inception to August 20, 2024.
Front Neurol
November 2024
Department of Neurology, Gazi University Faculty of Medicine, Ankara, Türkiye.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!