Acid-base sensors based on novel quinone-type dyes.

Chemistry

Laboratoire de Physico-Chimie Bioinorganique, UMR 7509 CNRS, ECPM, Université Louis Pasteur, 25 rue Becquerel, 67200 Strasbourg, France.

Published: January 2004

We present a detailed study on the acid-base behaviour of a family of "potentially antiaromatic" p-benzoquinonediimine ligands. These 12pi electron molecules can be considered as constituted of two chemically connected but electronically not conjugated 6pi-electron subunits. Upon successive protonation, "mono" and "double" cyanine-type chromophores are generated in solution and allow a precise and sensitive spectrophotometric detection. These molecules represent a new class of tunable quinones whose electronic and structural properties can be triggered by proton input, as established by a complete physico-chemical study involving a combination of potentiometric and spectrophotometric methods (absorption and emission).

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200305206DOI Listing

Publication Analysis

Top Keywords

acid-base sensors
4
sensors based
4
based novel
4
novel quinone-type
4
quinone-type dyes
4
dyes detailed
4
detailed study
4
study acid-base
4
acid-base behaviour
4
behaviour family
4

Similar Publications

Flexible and Stable GaN Piezoelectric Sensor for Motion Monitoring and Fall Warning.

Nanomaterials (Basel)

December 2024

Center On Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.

Wearable devices have potential applications in health monitoring and personalized healthcare due to their portability, conformability, and excellent mechanical flexibility. However, their performance is often limited by instability in acidic or basic environments. In this study, a flexible sensor with excellent stability based on a GaN nanoplate was developed through a simple and controllable fabrication process, where the linearity and stability remained at almost 99% of the original performance for 40 days in an air atmosphere.

View Article and Find Full Text PDF

Construction of Electrospun ZnO-NiO Nanofibers for Enhanced Ethanol Gas Sensing.

Sensors (Basel)

November 2024

Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea.

Semiconducting metal oxides with nanofiber (NF) morphologies are among the most promising materials for the realization of gas sensors. In this study, we have prepared electrospun ZnO-NiO composite NFs with different amounts of NiO (0, 20, 40, 60 and 80% wt%) for the systematic study of ethanol gas sensing. The fabricated composite NFs were annealed at 600 °C for crystallization.

View Article and Find Full Text PDF

In this paper, lanthanum and cerium co-doped carbon quantum dots (LaCe-CQDs) was firstly synthesized by one step hydrothermal method. The obtained LaCe-CQDs shown sable fluorescence properties with pH values from 3 to 9 and after 4 weeks of storage. The average particle size of LaCe-CQDs, with excitation and emission wavelengths of 350 nm and 446 nm, is 3.

View Article and Find Full Text PDF

The linear diblock copolymer polystyrene--poly(4-vinylpyridine) (PS-P4VP) is an important copolymer recently used in many applications such as optoelectronics, sensors, catalysis, membranes, energy conversion, energy storage devices, photolithography, and biomedical applications. (1) Background: The surface thermodynamic properties of PS-P4VP copolymers are of great importance in many chemical and industrial processes. (2) Methods: The inverse gas chromatography (IGC) at infinite dilution was used for the experimental determination of the retention volumes of organic solvents adsorbed on copolymer surfaces as a function of temperature.

View Article and Find Full Text PDF

Metabolic acidosis (MAc)-an extracellular pH (pH) decrease caused by a [HCO ] decrease at constant [CO]-usually causes intracellular pH (pH) to fall. Here we determine the extent to which the pH decrease depends on the pH decrease vs the concomitant [HCO ] decrease. We use rapid-mixing to generate out-of-equilibrium CO/HCO solutions in which we stabilize [CO] and [HCO ] while decreasing pH (pure acidosis, pAc), or stabilize [CO] and pH while decreasing [HCO ] (pure metabolic/down, pMet↓).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!