Ribonucleic acids are an attractive drug target owing to their central role in many pathological processes. Notwithstanding this potential, RNA has only rarely been successfully targeted with novel drugs. The difficulty of targeting RNA is at least in part due to the unusual mode of binding found in most small-molecule-RNA complexes: the ligand binding pocket of the RNA is largely unstructured in the absence of ligand and forms a defined structure only with the ligand acting as scaffold for folding. Moreover, electrostatic interactions between RNA and ligand can also induce significant changes in the ligand structure due to the polyanionic nature of the RNA. Aptamers are ideal model systems to study these kinds of interactions owing to their small size and the ease with which they can be evolved to recognize a large variety of different ligands. Here we present the solution structure of an RNA aptamer that binds triphenyl dyes in complex with malachite green and compare it with a previously determined crystal structure of a complex formed with tetramethylrosamine. The structures illustrate how the same RNA binding pocket can adapt to accommodate both planar and nonplanar ligands. Binding studies with single- and double-substitution mutant aptamers are used to correlate three-dimensional structure with complex stability. The two RNA-ligand complex structures allow a discussion of structural changes that have been observed in the ligand in the context of the overall complex structure. Base pairing and stacking interactions within the RNA fold the phosphate backbone into a structure that results in an asymmetric charge distribution within the binding pocket that forces the ligand to adapt through a redistribution of the positive partial charge.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.200300701DOI Listing

Publication Analysis

Top Keywords

binding pocket
12
planar nonplanar
8
nonplanar ligands
8
rna
8
interactions rna
8
structure complex
8
ligand
7
structure
7
complex
6
binding
5

Similar Publications

The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.

View Article and Find Full Text PDF

Cryo-EM structure of an activated GPR4-Gs signaling complex.

Nat Commun

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.

G protein-coupled receptor 4 (GPR4) belongs to the subfamily of proton-sensing GPCRs (psGPCRs), which detect pH changes in extracellular environment and regulate diverse physiological responses. GPR4 was found to be overactivated in acidic tumor microenvironment as well as inflammation sites, with a triad of acidic residues within the transmembrane domain identified as crucial for proton sensing. However, the 3D structure remains unknown, and the roles of other conserved residues within psGPCRs are not well understood.

View Article and Find Full Text PDF

The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones.

View Article and Find Full Text PDF

The pathology of Alzheimer's disease (AD) is complex due to its multifactorial nature and single targeting drugs proved inefficient. A series of novel 4-N-substituted-2-phenylquinazoline derivatives was designed and synthesized as potential multi-target directed ligands (MTDLs) through dual inhibition of AChE and MAO-B enzymes along with Aβ aggregation inhibition for the treatment of AD. Two compounds in the series, VAV-8 and VAV-19 were found to be the most potent inhibitors of both AChE and MAO-B enzymes and moderate inhibitor of Aβ, with good thermodynamic stability at the binding pocket of the enzymes.

View Article and Find Full Text PDF

Exploring the Binding Mechanism of ADGRG2 Through Metadynamics and Biochemical Analysis.

Int J Mol Sci

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

G protein-coupled receptors (GPCRs) play essential roles in numerous physiological processes and are key targets for drug development. Among them, adhesion GPCRs (aGPCRs) stand out for their unique domain structures and diverse functions. ADGRG2 is a member of the aGPCR family and is involved in the regulation of various systems in the human body, including reproductive, nervous, cardiovascular, and endocrine systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!