A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrogen-deuterium exchange effects on beta-endorphin release from AtT20 murine pituitary tumor cells. | LitMetric

Abundant evidences demonstrate that deuterium oxide (D2O) modulates various secretory activities, but specific mechanisms remain unclear. Using AtT20 cells, we examined effects of D2O on physiological processes underlying beta-endorphin release. Immunofluorescent confocal microscopy demonstrated that 90% D2O buffer increased the amount of actin filament in cell somas and decreased it in cell processes, whereas beta-tubulin was not affected. Ca2+ imaging demonstrated that high-K+-induced Ca2+ influx was not affected during D2O treatment, but was completely inhibited upon D2O washout. The H2O/D2O replacement in internal solutions of patch electrodes reduced Ca2+ currents evoked by depolarizing voltage steps, whereas additional extracellular H2O/D2O replacement recovered the currents, suggesting that D2O gradient across plasma membrane is critical for Ca2+ channel kinetics. Radioimmunoassay of high-K+-induced beta-endorphin release demonstrated an increase during D2O treatment and a decrease upon D(2)O washout. These results demonstrate that the H2O-to-D2O-induced increase in beta-endorphin release corresponded with the redistribution of actin, and the D2O-to-H2O-induced decrease in beta-endorphin release corresponded with the inhibition of voltage-sensitive Ca2+ channels. The computer modeling suggests that the differences in the zero-point vibrational energy between protonated and deuterated amino acids produce an asymmetric distribution of these amino acids upon D2O washout and this causes the dysfunction of Ca2+ channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1303825PMC
http://dx.doi.org/10.1016/S0006-3495(04)74135-1DOI Listing

Publication Analysis

Top Keywords

beta-endorphin release
20
d2o washout
12
d2o
9
d2o treatment
8
h2o/d2o replacement
8
release corresponded
8
ca2+ channels
8
amino acids
8
ca2+
6
beta-endorphin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!