Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Apoptosis is regulated by a series of biochemical events that commits a cell to death. We are interested in understanding and have been investigating the mechanisms by which nitric oxide (NO) induces apoptosis in human breast cancer cell lines. In this study, we investigated the possible interplay of extracellular signal-regulated kinase (ERK) and Akt pathways in NO-induced apoptosis. MKP-1 transcripts were induced in these cells as early as 4 h, peaking at 8 h leading to inactivation of ERK1/2 at 16-24 h after exposure to NO. We also found 50% decrease in the levels pAkt at 24 h of DETA-NONOate treatment. The inactivation of ERK1/2 preceded the dephosphorylation of Akt and apoptosis. NO was not able to inactivate ERK1/2 or Akt or to induce apoptosis in the presence of a phosphatase inhibitor, sodium orthovanadate, or antisense oligonucleotides, suggesting a cross-talk between the two pathways. NO also up-regulated MKP-1 in another breast cancer cell line, ZR 75-30, which led to inactivation of ERK1/2 and induced apoptosis. In MDA-MB-231, NO did not induce MKP-1, and there was no ERK inactivation or apoptosis. Our results indicate that expression of MKP-1 by NO leading to dephosphorylation of ERK1/2 is the initial essential event that commits the cells to the apoptotic pathway in breast cancer cells.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!