5-Fluorouracil (5-FU) is the most common chemotherapeutic agent used in the treatment of colorectal cancer, yet objective response rates are low. Recently, camptothecin (CPT) has emerged as an effective alternative therapy. Decisive means to determine treatment, based on the likelihood of response to each of these agents, could greatly enhance the management of this disease. Here, the ability of cDNA microarray-generated basal gene expression profiles to predict apoptotic response to 5-FU and CPT was determined in a panel of 30 colon carcinoma cell lines. Genes whose basal level of expression correlated significantly with 5-FU- and CPT-induced apoptosis were selected, and their predictive power was assessed using a "leave one out" jackknife cross-validation strategy. Selection of the 50 genes best correlated with 5-FU-induced apoptosis, but not 50 randomly selected genes, significantly predicted response to this agent. Importantly, this gene expression profiling approach predicted response more effectively than four previously established determinants of 5-FU response: thymidylate synthase and thymidine phosphorylase activity; and p53 and mismatch repair status. Furthermore, reanalysis of the database demonstrated that selection of the 149 genes best correlated with CPT-induced apoptosis maximally and significantly predicted response to this agent. These studies demonstrate that the basal gene expression profile of colon cancer cells can be used to predict and distinguish response to multiple chemotherapeutic agents and establish the potential of this methodology as a means by which rational decisions regarding choice of therapy can be approached.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gene expression
16
predicted response
12
response
9
colon carcinoma
8
basal gene
8
cpt-induced apoptosis
8
genes best
8
best correlated
8
response agent
8
gene
4

Similar Publications

The anti-tumor effect of the IFNγ/Fas chimera expressed on CT26 tumor cells.

Anim Cells Syst (Seoul)

January 2025

Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea.

Interferon gamma (IFNγ) is well-known for its ability to stimulate immune cells in response to pathogen infections and cancer. To develop an effective cancer therapeutic vaccine, CT26 colon carcinoma cells were genetically modified to express IFNγ either as a secreted form (sIFNγ) or as a membrane-bound form. For the membrane-bound expression, IFNγ was fused with Fas (mbIFNγ/Fas), incorporating the extracellular cysteine-rich domains, transmembrane, and cytoplasmic domains of Fas.

View Article and Find Full Text PDF

Prognostic value and immune landscapes of disulfidptosis‑related lncRNAs in bladder cancer.

Mol Clin Oncol

February 2025

Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.

Disulfidptosis, which was recently identified, has shown promise as a potential cancer treatment. Nonetheless, the precise role of long non-coding RNAs (lncRNAs) in this phenomenon is currently unclear. To elucidate their significance in bladder cancer (BLCA), a signature of disulfidptosis-related lncRNAs (DRlncRNAs) was developed and their potential prognostic significance was explored.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with the worst prognosis among all subtypes. The impact of distinct cell subpopulations within the tumor microenvironment (TME) on TNBC patient prognosis has yet to be clarified.

Methods: Utilizing single-cell RNA sequencing (scRNA-seq) integrated with bulk RNA sequencing (bulk RNA-seq), we applied Cox regression models to compute hazard ratios, and cross-validated prognostic scoring using a GLMNET-based Cox model.

View Article and Find Full Text PDF

Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1 restricted to HLA-A*02:01.

View Article and Find Full Text PDF

PGM3 insufficiency: a glycosylation disorder causing a notable T cell defect.

Front Immunol

December 2024

Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.

Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!