Alveolar macrophages are a primary barrier to pulmonary absorption of macromolecules.

Am J Physiol Lung Cell Mol Physiol

Dept. of Pharmaceutical Technology, School of Pharmacy, Université Catholique de Louvain, Ave. E. Mounier 73 UCL 73.20, 1200 Brussels, Belgium.

Published: May 2004

We demonstrate that a primary source of elimination of inhaled macromolecules after delivery to the lungs and before absorption into the systemic circulation owes to clearance by alveolar macrophages (AM). Depletion of AM by liposome-encapsulated dichloromethylene diphosphonate is shown to cause severalfold enhancement in systemic absorption of IgG and human chorionic gonadotropin after intratracheal instillation in rats. Lowering the doses of IgG delivered to the lungs alleviates local degradation and results in a dramatic increase in systemic absorption of the protein as well. Chemical and physical means of minimizing uptake of macromolecules by AM are proposed as novel methods for enhancing protein absorption from the lungs. Such strategies may have important ramifications on the development of inhalation as an attractive mode of administration of therapeutic proteins to the bloodstream.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00260.2003DOI Listing

Publication Analysis

Top Keywords

alveolar macrophages
8
systemic absorption
8
absorption
5
macrophages primary
4
primary barrier
4
barrier pulmonary
4
pulmonary absorption
4
absorption macromolecules
4
macromolecules demonstrate
4
demonstrate primary
4

Similar Publications

Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.

View Article and Find Full Text PDF

The use of genetically diverse mouse models offers a more accurate reflection of human genetic variability, improving the translatability of findings to heterogeneous human populations. This approach is particularly valuable in understanding diverse immune responses to disease by environmental exposures. This study investigates the inflammatory responses to acute exposures to mainstream cigarette smoke (CS) and environmental tobacco smoke (ETS) in two genetically diverse mouse strains, CC002/UncJ (UNC) & Diversity Outbred (J:DO).

View Article and Find Full Text PDF

Matrix metalloproteinase 7 (MMP7) as a molecular target for Mycoplasma gallisepticum (MG) resistance in chickens.

Int J Biol Macromol

January 2025

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Mycoplasma gallisepticum (MG) causes chronic respiratory disease (CRD), posing a significant threat to global poultry production. Current preventive strategies face limitations, emphasizing the need for alternative approaches such as breeding for disease resistance. This study identifies the matrix metalloproteinase 7 (MMP7) gene as a key factor in CRD resistance.

View Article and Find Full Text PDF

Sepsis-induced acute lung injury (ALI) remains a leading cause of mortality in critically ill patients. Macrophages, key modulators of immune responses, play a dual role in both promoting and resolving inflammation. Exosomes, small extracellular vesicles released by various cells, carry bioactive molecules that influence macrophage polarization and immune responses.

View Article and Find Full Text PDF

DTPA and anti-inflammatory drug associations to alleviate Pu-induced response of macrophages in vitro.

Toxicol In Vitro

January 2025

Atomic Energy and Alternative Energies Commission (CEA), Laboratory of Radiotoxicology, CEA, Paris-Saclay University, Bruyères-le-Châtel, France.

Internal contamination by inhalation of plutonium poorly soluble compounds leads to their long time retention in alveolar macrophages inducing delayed pathology development. As previous studies highlighted co-localization of retained Pu and inflammatory lesions, this study was designed to assess the combined effect of the reference treatment (DTPA) and anti-inflammatory drugs on Pu-induced early response of macrophages in vitro. Pu colloids, mimicking poorly soluble Pu, were characterized using filtration and solid-state nuclear track detectors CR39.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!