We have previously reported the discovery and preliminary structure-activity relationships of a new class of specific HIV-1 reverse transcriptase (RT) inhibitors whose prototype compound is the 1-[2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3-N-[(carboxy) methyl]-thymine. In an attempt to increase the inhibitory efficacy against HIV-1 RT of this new class of nucleosides, and to further explore the structural features required for anti-HIV-1 activity, different types of modifications have been carried out on the prototype compound. These include substitution of the tert-butyldimethylsilyl groups by other liphophilic groups, replacement of the carboxy group at the N-3 position of the nucleobase by other functional groups, change in the length of the spacer between the thymine and the carboxylic acid residue and substitution of the thymine moiety by other pyrimidine (uracil, 5-ethyluracil) or purine (hypoxanthine) nucleobases. In addition, the most salient structural features of this new class of HIV-1-specific nucleosides have been incorporated into classical HIV RT nucleoside inhibitors such as ddl, AZT, d4T. Our studies demonstrate that both the carboxymethyl moiety at the nucleobase and tert-butyldimethylsilyl groups at the sugar are important structural components since deletion of either of them is detrimental to the antiviral activity.

Download full-text PDF

Source
http://dx.doi.org/10.1177/095632020301400504DOI Listing

Publication Analysis

Top Keywords

specific hiv-1
8
hiv-1 reverse
8
reverse transcriptase
8
transcriptase inhibitors
8
prototype compound
8
structural features
8
tert-butyldimethylsilyl groups
8
structure-activity relationship
4
relationship studies
4
studies novel
4

Similar Publications

Antiviral Agents: Structural Basis of Action and Rational Design.

Subcell Biochem

December 2024

Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.

During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches.

View Article and Find Full Text PDF

Triterpene esters from Uncaria rhynchophylla hooks as potent HIV-1 protease inhibitors and their molecular docking study.

Sci Rep

December 2024

Department of Pharmacognosy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.

Despite significant advancements with combination anti-retroviral agents, eradicating human immunodeficiency virus (HIV) remains a challenge due to adverse effects, adherence issues, and emerging viral resistance to existing therapies. This underscores the urgent need for safer, more effective drugs to combat resistant strains and advance acquired immunodeficiency syndrome (AIDS) therapeutics. Eight triterpene esters (1-8) were identified from Uncaria rhynchophylla hooks.

View Article and Find Full Text PDF

The accurate quantification of nuclear factor Kappa B p65 (NF-κB p65) is critical for understanding inflammatory mechanisms, especially in HIV-1 infected individuals, where NF-κB p65 contributes to chronic immune activation. Conventional methods such as enzyme-linked immunosorbent assay (ELISA) and western blotting are limited in terms of sensitivity and reproducibility. This study aimed to devise a standardized real-time quantitative polymerase chain reaction (RT-qPCR) assay for NF-κB p65 using specifically designed primers and a probe.

View Article and Find Full Text PDF

Deciphering long-term immune effects of HIV-1/SARS-CoV-2 co-infection: a longitudinal study.

Med Microbiol Immunol

December 2024

Immunology Section, Molecular Immuno-Biology Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.

Introduction: While the general immune response to Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) is well-understood, the long-term effects of Human Immunodeficiency Virus-1/Severe Acute Respiratory Syndrome-Coronavirus-2 (HIV-1/SARS-CoV-2) co-infection on the immune system remain unclear. This study investigates the immune response in people with HIV-1 (PWH) co-infected with SARS-CoV-2 to understand its long-term health consequences.

Methods: A retrospective longitudinal study of PWH with suppressed viral load and SARS-CoV-2 infection was conducted.

View Article and Find Full Text PDF

Design and evaluation of a multi-epitope HIV-1 vaccine based on human parvovirus virus-like particles.

Vaccine

December 2024

Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico. Electronic address:

The development of a protective HIV vaccine remains a challenge given the high antigenic diversity and mutational rate of the virus, which leads to viral escape and establishment of reservoirs in the host. Modern antigen design can guide immune responses towards conserved sites, consensus sequences or normally subdominant epitopes, thus enabling the development of broadly neutralizing antibodies and polyfunctional lymphocyte responses. Conventional epitope vaccines can often be impaired by low immunogenicity, a limitation that may be overcome by using a carrier system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!