The main objective of this study was to identify mRNA transcripts associated with embryonic developmental competence. In cattle, mRNA transcripts, ribosomes, and proteins accumulated during the growth phase are drawn on to sustain maturation, fertilization, and the initial cell cycle divisions up to the 8- to 16-cell stage. Early cleaving mammalian zygotes are more likely to develop to the blastocyst stage than their later cleaving counterparts, thus reflecting the intrinsic quality of the oocytes from which they originated. We describe the combination of this well-established model for the retrospective determination of developmental competence in mammalian oocytes with a technique for wide screening of differential gene expression in different biological populations. Immature cumulus oocyte complexes were recovered from surface visible follicles on abattoir ovaries, washed, and submitted to routine in vitro maturation and fertilization. Two-cell embryos were removed from culture at 3-hr intervals from 24 to 42 hr post insemination (pi). Two populations of two-cell embryos were identified; those that cleaved early (before 27 hpi) and those that cleaved late (after 33 hpi). Suppressive subtractive hybridization was carried out on cDNA from the two populations, following which, differentially expressed amplicons were subcloned and sequenced. The sequences were submitted to the nonredundant and expressed sequence tag (EST) databases at NCBI using the BLAST algorithm. The differential expression of three selected candidate genes that were identified as putatively upregulated in the early cleaving zygotes were chosen for further investigations; histone H3, cyclin B1, and GDF-9B. Using quantitative real time PCR we have shown that histone H3A is significantly more abundant in embryos that cleave earliest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrd.10385 | DOI Listing |
J Assist Reprod Genet
December 2024
Department of Obstetrics and Gynecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Purpose: Map the nuclear error phenotypes in the two-cell embryo after assisted reproduction using time lapse images and the effect on good quality blastocyst formation.
Methods: Retrospective cohort study using time lapse images, categorizing 2331 two-cell embryos from 392 patient couples and 504 ART cycles categorizing each embryo as mononucleated, multinucleated, micronucleated, binucleated, split nucleation or mixed error. Correlating nuclear error phenotype with good quality blastocyst formation rate (BFR) using contingency tables and unadjusted odds ratio.
Proc Natl Acad Sci U S A
December 2024
State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China.
Zygotic genome activation occurs in two-cell (2C) embryos, and a 2C-like state is also activated in sporadic (~1%) naïve embryonic stem cells in mice. Elevated chromatin accessibility is critical for the 2C-like state to occur, yet the underlying molecular mechanisms remain elusive. Zscan4 exhibits burst expression in 2C embryos and 2C-like cells.
View Article and Find Full Text PDFMicrobiome
December 2024
Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany.
Background: The microbiome greatly affects health and wellbeing. Evolutionarily, it is doubtful that a host would rely on chance alone to pass on microbial colonization to its offspring. However, the literature currently offers only limited evidence regarding two alternative hypotheses: active microbial shaping by host genetic factors or transmission of a microbial maternal legacy.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
Creating genetically modified (GM) animals using CRISPR/Cas mediated through the electroporation of two-cell stage embryos, rather than fertilized eggs, holds considerable potential. The full potential of genome editing using two-cell stage embryos is only beginning to be explored. We developed an improved electroporation method to prevent blastomere fusion in two-cell-stage embryos, enabling efficient genome editing.
View Article and Find Full Text PDFDifferentiation
December 2024
University of Louisville, School of Medicine, Department of Biochemistry and Molecular Genetics, 580 S Preston St, Louisville, KY, 40202, USA. Electronic address:
Retinoic Acid (RA) is the key signaling molecule during embryonic development with the RA pathway playing multiple roles in throughout development. Previous work has shown RA signaling to be key in development of the craniofacial skeleton. RA signaling is driven by RA binding to the nuclear transcription factors, retinoic acid receptor (RAR) and retinoic X receptor (RXR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!