Uncoupling protein (UCP) 2 is a member of the mitochondrial transporter superfamily that uncouples proton entry in the mitochondrial matrix from ATP synthesis. Although its physiological role remains to be established, UCP2 is considered a candidate gene for association with energy metabolism and obesity. A common promoter polymorphism, -866 G/A, has been associated with increased UCP2 gene expression and middle-aged adult obesity. In fact, our analysis of 296 juvenile obese and 568 nonobese control subjects revealed no difference in the prevalence of this polymorphism. Insulin and glucose response to oral glucose was comparable across the -866 genotypes. Metabolic studies in 147 of these juvenile obese subjects showed that homozygosity for the UCP2 promoter variant A was associated with important changes in energy metabolism compared with other genotypes, i.e., a 34% increase of carbohydrate oxidation (94 +/- 10 vs. 70 +/- 3 mg.min(-1).m(-2), P = 0.004) and a 23% decrease of lipid oxidation (26 +/- 3 vs. 34 +/- 1 mg.min(-1).m(-2), P = 0.03). Therefore, the juvenile obese subjects who are homozygous for the A variant have an increased ratio (3.6 +/- 1.2) of calories derived from carbohydrates to those from lipids compared with G/A or G/G obese children (1.4 +/- 0.2, P = 0.003), suggesting a role for UCP2 in the partitioning of metabolic fuels.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.53.1.235DOI Listing

Publication Analysis

Top Keywords

juvenile obese
12
-866 g/a
8
uncoupling protein
8
associated increased
8
lipid oxidation
8
energy metabolism
8
obese subjects
8
oxidation +/-
8
+/- +/-
8
+/- mgmin-1m-2
8

Similar Publications

The Zika virus (ZIKV) epidemic elicited a rapid commitment to the development of animal models for ZIKV research. Non-human primates (NHPs) and mice have made significant contributions to this research, but NHPs are expensive, have a long gestation period, and are available only in small numbers; non-genetically modified mice are resistant to infection. To address these deficiencies, we have established the laboratory opossum, , as a small animal model that complements the mouse and monkey models.

View Article and Find Full Text PDF

The growing range of complications of diabetes mellitus.

Trends Endocrinol Metab

January 2025

School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.

With the rising prevalence of type 2 diabetes mellitus (T2DM) and obesity, several previously under-recognised complications associated with T2DM are becoming more evident. The most common of these emerging complications are metabolic dysfunction-associated steatotic liver disease (MASLD), cancer, dementia, sarcopenia, and frailty, as well as other conditions involving the lung, heart, and intestinal tract. Likely causative factors are chronic inflammation and insulin resistance, whereas blood glucose levels appear to play a lesser role.

View Article and Find Full Text PDF

Importance: A growing body of literature suggests the presence of a prodromal period with nonspecific signs and symptoms before onset of multiple sclerosis (MS).

Objective: To systematically assess diseases and symptoms diagnosed in the 5 years before a first MS- or central nervous system (CNS) demyelinating disease-related diagnostic code in pediatric patients compared with controls without MS and controls with another immune-mediated disorder, juvenile idiopathic arthritis (JIA).

Design, Setting, And Participants: This population-based, matched case-control study included children and adolescents (aged <18 years) in Germany with statutory health insurance from January 2010 to December 2020.

View Article and Find Full Text PDF

[MONOGENIC OBESITY - PATHOPHYSIOLOGY AND TREATMENT].

Harefuah

December 2024

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel, Pediatric and Diabetes Unit, Sheba Medical Center, Juvenile Diabetes Center, Maccabi Health Care Services.

View Article and Find Full Text PDF

High-fat diet (HFD)-induced obesity is a global health concern associated with gastrointestinal disorders. While mammalian models have elucidated the effects of a HFD on intestinal structure and function, its impact on zebrafish, a crucial model for studying diet-induced obesity and gastrointestinal dysfunction, remains inadequately characterized. This study investigated the influence of a HFD on zebrafish intestinal morphology, tight junction (TJ) protein expression, and inflammatory markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!