It is suggested that the maternal transmission of islet autoantibodies increases the risk of autoimmune diabetes in mice. The aim of this study was to determine whether fetal exposure to islet autoantibodies modified the risk of type 1 diabetes in humans. Islet autoantibodies were measured at birth in 720 offspring of mothers with type 1 diabetes. Offspring were prospectively followed for the development of multiple islet autoantibodies and diabetes. Offspring who were GAD or IA-2 autoantibody positive at birth (n = 678) had significantly lower risks for developing multiple islet autoantibodies (5-year risk 1.3%) and diabetes (8-year risk 1.1%) than offspring who were islet autoantibody negative at birth (5.3%, P = 0.008; and 3%, P = 0.04, respectively). Risk remained reduced after adjustment for birth weight, gestational age, or maternal diabetes duration (adjusted hazards ratio 0.25, P = 0.007 for multiple islet autoantibodies; 0.25, P = 0.04 for diabetes). Protection in offspring with islet autoantibodies at birth was most striking in offspring without the HLA DRB1*03/DRB1*04-DQB1*0302 genotype. Maternal transmission of antibodies to exogenous insulin did not affect diabetes risk in offspring. These findings suggest that fetal exposure to islet autoantibodies in children born to mothers with type 1 diabetes may be protective against future islet autoimmunity and diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/diabetes.53.1.1 | DOI Listing |
Hormones (Athens)
January 2025
Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment but can give rise to immune-related adverse events such as ICI-related diabetes mellitus (DM).
Case Presentation: We herein present the case of a 59-year-old Japanese man with malignant melanoma who developed ICI-related DM after 18 months of nivolumab treatment. He experienced marked hyperglycemia and diabetic ketoacidosis without a personal or family history of diabetes.
Diabetes
January 2025
Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.
Type 1 Diabetes (T1D) is an autoimmune disease mediated by autoreactive T cells. Our studies indicate that CD4 T cells reactive to Hybrid Insulin Peptides (HIPs) play a critical role in T cell-mediated beta-cell destruction. We have shown that HIPs form in human islets between fragments of the C-peptide and cleavage products of secretory granule proteins.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.
Type 1 diabetes (T1D) is a metabolic disorder caused by a complete lack of insulin, primarily manifested by hyperglycemia. The mechanisms underlying the onset of T1D are complex, involving genetics, environment, and various unknown factors, leading to the infiltration of various immune components into the islets. Besides T cells, B cells are now considered important contributors to the pathogenesis of T1D, according to recent studies.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States.
During type 1 diabetes (T1D) progression, beta cells become dysfunctional and exhibit reduced first-phase insulin release. While this period of beta cell dysfunction is well established, its cause and underlying mechanism remain unknown. To address this knowledge gap, live human pancreas tissue slices were prepared from autoantibody-negative organ donors without diabetes (ND), donors positive for one or more islet autoantibodies (AAb+), and donors with T1D within 0-4 years of diagnosis (T1D+).
View Article and Find Full Text PDFBMJ Open Diabetes Res Care
January 2025
Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
Introduction: Altered serum levels of growth hormones, adipokines, and exocrine pancreas enzymes have been individually linked with type 1 diabetes (T1D). We collectively evaluated seven such biomarkers, combined with islet autoantibodies (AAb) and genetic risk score (GRS2), for their utility in predicting AAb/T1D status.
Research Design And Methods: Cross-sectional serum samples (n=154 T1D, n=56 1AAb+, n=77 ≥2AAb+, n=256 AAb-) were assessed for IGF1, IGF2, adiponectin, leptin, amylase, lipase, and trypsinogen (n=543, age range 2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!