Background: There is considerable interpatient variability in pain tolerance during and after treatment of skin cancer with photodynamic therapy (PDT). Additionally, erythema and edema are common, with mild crusting and healing over 1 to 2 weeks.

Objective: To determine whether concurrent cold air analgesia improves the tolerability of PDT.

Method: Twenty-six patients with two similar superficial skin cancers were treated with PDT. One lesion was treated with cold air analgesia and the other without. Patients rated their pain during treatment using the Wong Baker Faces Pain Scale and detailed duration of posttreatment pain. At week 2, the inflammatory response was assessed.

Result: A statistically significant difference in the analgesia group was shown with respect to the mean duration of pain and the level of erythema after the first treatment as well as pain scores during the second treatment.

Conclusion: Patient acceptance of PDT for treatment of nonmelanoma skin cancer is improved with lessened morbidity assessed with concurrent use of cold air analgesia to the treatment field.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1524-4725.2004.30011.xDOI Listing

Publication Analysis

Top Keywords

cold air
16
air analgesia
16
photodynamic therapy
8
skin cancer
8
concurrent cold
8
treatment
6
pain
6
analgesia
5
cold
4
analgesia photodynamic
4

Similar Publications

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

Household waste-specific ambient air shows greater inhalable antimicrobial resistance risks in densely populated communities.

Waste Manag

January 2025

Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, PR China. Electronic address:

Household waste is a hotspot of antibiotic resistance, which can be readily emitted to the ambient airborne inhalable particulate matters (PM) during the day-long storage in communities. Nevertheless, whether these waste-specific inhalable antibiotic resistance genes (ARGs) are associated with pathogenic bacteria or pose hazards to local residents have yet to be explored. By high-throughput metagenomic sequencing and culture-based antibiotic resistance validation, we analyzed 108 airborne PM and nearby environmental samples collected across different types of residential communities in Shanghai, the most populous city in China.

View Article and Find Full Text PDF

Tree-ring width chronologies of Du Tour from near the upper treeline in the Western Sayan, Southern Siberia are found to have an exceptional (below mean-3SD) multi-year drop near 1700 CE, highlighted by the seven narrowest-ring years in a 1524-2022 regional chronology occurring in the short span of one decade. Tree rings are sometimes applied to reconstruct seasonal air temperatures; therefore, it is important to identify other factors that may have contributed to the growth suppression. The spatiotemporal scope of the "nosedive" in tree growth is investigated with a large network of (14 sites) and Ledeb.

View Article and Find Full Text PDF

Periprosthetic joint infections occur in 1-2% of all patients undergoing prosthetic joint surgeries. Although strong efforts have been made to reduce infection rates, conventional therapies like one- or two-stage revisions have failed to lower the infection rates. Cold atmospheric plasma (CAP) has shown promising results in reducing bacterial loads on surfaces.

View Article and Find Full Text PDF

Multi-Person Localization Based on a Thermopile Array Sensor with Machine Learning and a Generative Data Model.

Sensors (Basel)

January 2025

Laboratory of Adaptive Lighting Systems and Visual Processing, Technical University of Darmstadt, Hochschulstr. 4a, 64289 Darmstadt, Germany.

Thermopile sensor arrays provide a sufficient counterbalance between person detection and localization while preserving privacy through low resolution. The latter is especially important in the context of smart building automation applications. Current research has shown that there are two machine learning-based algorithms that are particularly prominent for general object detection: You Only Look Once (YOLOv5) and Detection Transformer (DETR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!