Inter-module credit assignment in modular reinforcement learning.

Neural Netw

Human information science laboratories, ATR International, 2-2-2 Hikaridai, Seika, Soraku, Kyoto 619-0288, Japan.

Published: September 2003

Critical issues in modular or hierarchical reinforcement learning (RL) are (i) how to decompose a task into sub-tasks, (ii) how to achieve independence of learning of sub-tasks, and (iii) how to assure optimality of the composite policy for the entire task. The second and last requirements are often under trade-off. We propose a method for propagating the reward for the entire task achievement between modules. This is done in the form of a 'modular reward', which is calculated from the temporal difference of the module gating signal and the value of the succeeding module. We implement modular reward for a multiple model-based reinforcement learning (MMRL) architecture and show its effectiveness in simulations of a pursuit task with hidden states and a continuous-time non-linear control task.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0893-6080(02)00235-6DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
12
entire task
8
task
5
inter-module credit
4
credit assignment
4
assignment modular
4
modular reinforcement
4
learning
4
learning critical
4
critical issues
4

Similar Publications

CNN is considered an efficient tool in brain image segmentation. However, neonatal brain images require specific methods due to their nature and structural differences from adult brain images. Hence, it is necessary to determine the optimal structure and parameters for these models to achieve the desired results.

View Article and Find Full Text PDF

This study identifies microRNAs (miRNAs) with significant discriminatory power in distinguishing melanoma from nevus, notably hsa-miR-26a and hsa-miR-211, which have exhibited diagnostic potential with accuracy of 81% and 78% respectively. To enhance diagnostic accuracy, we integrated miRNAs into various machine-learning (ML) models. Incorporating miRNAs with AUC scores above 0.

View Article and Find Full Text PDF

Novel deep reinforcement learning based collision avoidance approach for path planning of robots in unknown environment.

PLoS One

January 2025

Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Diriyah, Riyadh, Saudi Arabia.

Reinforcement learning is a remarkable aspect of the artificial intelligence field with many applications. Reinforcement learning facilitates learning new tasks based on action and reward principles. Motion planning addresses the navigation problem for robots.

View Article and Find Full Text PDF

Introduction: Simulation has become an integral part of health care education curricula that is used to teach a variety of topics, from emergency situations to physical diagnoses. Without further reinforcement, the skills learned through the simulation are subject to deterioration over time. Rapid Cycle Deliberate Practice (RCDP) is a teaching method that was developed to resist this deterioration and achieve mastery of skills.

View Article and Find Full Text PDF

Introduction: Simulation has become an integral part of healthcare education. Studies demonstrate rapid knowledge and skill acquisition with the use of simulation and rapid knowledge degradation if it is not further reinforced. Effect of simulation on metacognitive processes, or the ability to understand one's own knowledge, is not well-investigated yet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!