Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of the present paper is to review our current understanding of the chemistry and biochemistry of folic acid and related folates, and to discuss their impact on public health beyond that already established in relation to neural-tube defects. Our understanding of the fascinating world of folates and C1 metabolism, and their role in health and disease, has come a long way since the discovery of the B-vitamin folic acid by Wills (1931), and its first isolation by Mitchell et al. (1941). However, there is still much to do in perfecting methods for the measurement of folate bioavailability, and status, with a high extent of precision and accuracy. Currently, examination of the relationships between common gene polymorphisms involved in C1 metabolism and folate bioavailability and folate status, morbidity, mortality and longevity is evaluated as a series of individual associations. However, in the future, examination of the concurrent effects of such common gene polymorphisms may be more beneficial.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1079/PNS2003271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!