A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Environmental and hormonal influences upon EOD waveform in gymnotiform pulse fish. | LitMetric

Environmental and hormonal influences upon EOD waveform in gymnotiform pulse fish.

J Physiol Paris

Departamento de Neurofisiología, Instituto de Investigaciones Biológicas Clemente Estable, Universidad de la República, Avda. Italia 3318, 11600 Montevideo, Uruguay.

Published: February 2004

Temperature is a major variable that affects all biological systems. Environmental temperature determines animal geographical distribution and activity, and influences their reproductive cycle, particularly within the temperate zone. Temperature, as a physical parameter, also strongly affects excitable tissues. The hypothesis of temperature as the most important environmental cue for the onset of breeding in gymnotiform pulse fish of the temperate zone is supported by: (a) a clear temporal correlation that was observed in the wild between water temperature and sexual maturity, and (b) the induction of gonadal maturation and sexual differences after acclimation at high temperature (28 degrees C) in the laboratory. Temperature sensitivity of EOD waveform (described in Brachyhypopomus pinnicaudatus and Gymnotus carapo) is characterized by the decrease of the EOD's late head-negative phase as temperature increases. This phenomenon depends on electrocyte properties since: (a) experimentally induced changes of discharge rate at constant temperature generate smaller EOD distortion, and (b) the effect of temperature upon EOD also depends on water conductivity. Temperature sensitivity of EOD waveform is negatively correlated with gonadal maturity in Brachyhypopomus pinnicaudatus. High temperature sensitivity was observed during the non-breeding season, whereas low temperature sensitivity was recorded during the breeding season. Temperature sensitivity of EOD waveform in both Brachyhypopomus pinnicaudatus and Gymnotus carapo was modulated by: (a) testosterone treatment (100 microg/g) that decreased temperature sensitivity, and (b) acclimation at high temperature (28 degrees C, 1 month) that also decreased temperature sensitivity. Temperature is probably acting through the neuroendocrine system, and ultimately interacting with steroid hormones in their effects upon EOD waveform.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0928-4257(03)00003-2DOI Listing

Publication Analysis

Top Keywords

temperature sensitivity
28
eod waveform
20
temperature
18
high temperature
12
sensitivity eod
12
brachyhypopomus pinnicaudatus
12
gymnotiform pulse
8
pulse fish
8
temperate zone
8
acclimation high
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!